All X

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1076    Accepted Submission(s): 510

Problem Description
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:

F(x,m) mod k ≡ c

 
Input
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9

1≤m≤1010

0≤c<k≤10,000

 
Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。

 
Source
 
没弄数学专题结果百度之星被这题卡了。。
(a/b)%mod = (a)%(b*mod)/b%mod 懂了这个完全就是水题。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;
typedef long long LL; LL pow_mod(LL a,LL n,LL mod){
LL ans = ;
while(n){
if(n&) ans = ans*a%mod;
a = a*a%mod;
n>>=;
}
return ans;
} int main()
{
LL x,m,k,c;
int tcase;
scanf("%d",&tcase);
int t =;
while(tcase--){
cin>>x>>m>>k>>c;
printf("Case #%d:\n",t++);
LL mod = *k;
LL ans = ((pow_mod(,m,mod)-)*x%mod+mod)%mod;
if(ans==*c%mod){
printf("Yes\n");
}else printf("No\n");
}
return ;
}

hdu 5690(模运算)的更多相关文章

  1. HDU——1395 2^x mod n = 1(取模运算法则)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. mysql中的优化, 简单的说了一下垂直分表, 水平分表(有几种模运算),读写分离.

    一.mysql中的优化 where语句的优化 1.尽量避免在 where 子句中对字段进行表达式操作select id from uinfo_jifen where jifen/60 > 100 ...

  3. 数论 : 模运算法则(poj 1152)

    题目:An Easy Problem! 题意:求给出数的最小进制. 思路:暴力WA: discuss中的idea: 给出数ABCD,若存在n 满足 (A* n^3 +B*n^2+C*n^1+D*n^0 ...

  4. poj 3980 取模运算

    取模运算 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10931   Accepted: 6618 Description ...

  5. HDU 4927 大数运算

    模板很重要 #include <cstdio> #include <cstring> #include <cstdlib> #include <iostrea ...

  6. c++ 模运算

    在数学里,"模运算"也叫"求余运算",用mod来表示模运算. 对于 a mod b 可以表示为 a = q(商)*b(模数) + r(余数),其中q表示商,b表 ...

  7. #数论-模运算#POJ 1150、1284、2115

    1.POJ 1150 The Last Non-zero Digit #质因数分解+模运算分治# 先贴两份题解: http://www.hankcs.com/program/algorithm/poj ...

  8. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  9. Numpy 基本除法运算和模运算

    基本算术运算符+.-和*隐式关联着通用函数add.subtract和multiply 在数组的除法运算中涉及三个通用函数divide.true_divide和floor_division,以及两个对应 ...

随机推荐

  1. POJ-1426-Find the multiply

    这题深搜广搜都可以做,深搜的做法就是把每个由1 和 0 组成的数字拓展10倍以及拓展10倍+1,然后压入队列. 这样可以走过所有由10组成的数字,且两个方向平行发展(*10  +0和+1). bfs ...

  2. python入门:1-99所有数的和附带等式

    #!/usr/bin/env python # -*- coding:utf-8 -*- #1-99所有数的和的等式 #start(开始,译音:思达二测)sum(合计,译音:桑木)temp(临时雇员, ...

  3. Maven配置项目依赖使用本地仓库的方法汇总

    Maven配置项目使用本地仓库有以下方式实现: 1.类似本地仓库,但是属于本地依赖,比如某个JAR包是引用第三方的,直接放在了项目的lib文件夹,那么此时可以如下配置项目的POM: <depen ...

  4. Altium Designer入门学习笔记1.软件安装与资料收集

    一.软件安装 微信:http://url.cn/5Eudzt9 关注微信公众号"软件安装管家",点击"软件目录",弹出"软件目录",点击进入 ...

  5. Cinder配置多Ceph后端步骤

    1. 检查cinder当前backend配置 使用cinder service-list,查看cinder-volume服务的Host字段格式. 旧版格式: 新版格式: 旧版中Host字段是cinde ...

  6. source insight

    关于source inlight的版本 http://www.camnpr.com/archives/559.html   最新版本 http://www.sourceinsight.com/upda ...

  7. 深入理解Python中的进程

    1.进程的概念什么是进程—>CPU在同一时刻只能处理一个任务,只是因为cpu执行速度很快. cpu在各个任务之间来回的进行切换. 进程的概念:正在进行的一个过程或者说一个任务,而负责执行任务的则 ...

  8. Diango 一——URL

    内容概要 1.web框架初识 2.MTV模式 3.Django创建流程和命令行工具 4.配置文件  settings 5.视图函数  views 6.路由系统  URL 7.模板系统  templat ...

  9. 修改Typora的快捷键【markdown软件】

    修改Typora的快捷键 魔芋:Typora是一款不错的编写markdowm的软件,推荐使用. 魔芋:修改这个文件conf.user.json   "keyBinding": { ...

  10. Oracle 10g Data Pump Expdp/Impdp 详解

    Data Pump 介绍 在第一部分看了2段官网的说明, 可以看出数据泵的工作流程如下: (1)在命令行执行命令 (2)expdp/impd 命令调用DBMS_DATAPUMP PL/SQL包. 这个 ...