P1144 最短路计数

题目描述

给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

输入第一行包含2个正整数N,M,为图的顶点数与边数。

接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式:

输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。

输入输出样例

输入样例#1:

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出样例#1:

1
1
1
2
4

说明

1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。

对于20%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N<=1000000,M<=2000000。

变形的spfa(说白了就是一个bfs),在进行最短路查询的时候判断是否出现了距离相同的路径。

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 2000000
#define mod 100003
using namespace std;
queue<int>q;
bool vis[N];
int n,m,x,y,tot,head[N],ans[N],dis[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,next,from;
}edge[N<<];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int main()
{
    n=read(),m=read();
    ;i<=m;i++)
     x=read(),y=read(),add(x,y),add(y,x);
    memset(dis,0x3f3f3f3f,sizeof(dis));
    q.push(),dis[]=,vis[]=]=;
    while(!q.empty())
    {
        x=q.front();q.pop();vis[x]=false;
        for(int i=head[x];i;i=edge[i].next)
        {
            int to=edge[i].to;
            )
            {
                dis[to]=dis[x]+;
                ans[to]=ans[x]%mod;
                if(!vis[to])
                {
                    vis[to]=true;
                    q.push(to);
                }
            }
            )
            {
                ans[to]=(ans[x]+ans[to])%mod;
                if(!vis[to])
                {
                    vis[to]=true;
                    q.push(to);
                }
            }
        }
    }
    ;i<=n;i++)
     printf("%d\n",ans[i]);
    ;
}
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
using namespace std;
struct Edge//邻接表存边
{
    int t;
    int nexty;
}edge[];
]={};//邻接表的东东(存以i为发出点的编号最大的边的编号)……有人不懂吗
;
inline void add(int a,int b)//邻接表添加边
{
    cnt++;
    edge[cnt].t=b;
    edge[cnt].nexty=head[a];
    head[a]=cnt;
}
]={};//每一个点的最短路径条数
]={};//用来避免重复的统计表,存当前在队列中,到节点i的最短路径条数
];//存最短路径
]={};//是否在队列中
queue<int>spfa;//SPFA所用队列
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    int a,b;
    ;i<m;i++)
    {
        scanf("%d%d",&a,&b);
        add(a,b);
        add(b,a);//存边
    }
    ;i<=n;i++)dis[i]=2e9;
    dis[]=;//初始化dis
    ]=true;
    js[]=;//1到1最短路径1条
    rdjs[]=;//此次队列中,到1的最短路径条数为1
    spfa.push();//将1加入队列
    int curr;
    while(!spfa.empty())
    {
        curr=spfa.front();//更新发出点
        ;i=edge[i].nexty)//遍历出发边
        {
            )//若最短路有变
            {
                dis[edge[i].t]=dis[curr]+;//更新最短路
                rdjs[edge[i].t]=js[edge[i].t]=rdjs[curr]%;//以前的计数均舍弃,更新到出发点的到达路径条数
                if(!in[edge[i].t])
                {//加入队列

                    in[edge[i].t]=true;
                    spfa.push(edge[i].t);
                }
            }
            else
            )//若又有一条最短路
            {
                js[edge[i].t]=(js[edge[i].t]+rdjs[curr])%;//增加最短路个数
                rdjs[edge[i].t]=(rdjs[edge[i].t]+rdjs[curr])%;//在rdjs上更新,避免重复
                if(!in[edge[i].t])
                {//入队
                    in[edge[i].t]=true;
                    spfa.push(edge[i].t);
                }
            }
        }
        in[curr]=false;
        rdjs[curr]=;//此次的最短路统计已用完,将此节点的最短路条数初始化,避免重复(在此题中似乎并没有什么用)
        spfa.pop();//出队
    }
    ;i<=n;i++)printf("%d\n",js[i]);//输出
    ;
}

比较详细一点的题解

洛谷——P1144 最短路计数的更多相关文章

  1. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  2. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  3. 洛谷 P1144 最短路计数 题解

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...

  4. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  5. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  6. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

  7. 洛谷P1144——最短路计数

    题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream ...

  8. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  9. 洛谷 P1144 最短路计数 Label:水

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

随机推荐

  1. redis列表,字典,管道,vue安装,创建项目

    redis mysql,redis,mogondb 1.mysql,oracle:关系型数据库,有表概念 2.redis,mongodb/nosql:非关系型数据库 没有表概念 mongodb存储在硬 ...

  2. Meteor Shower POJ - 3669 (bfs+优先队列)

    Meteor Shower Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26455   Accepted: 6856 De ...

  3. 开源OA系统启动:基础数据,工作流设计

    原文:http://www.cnblogs.com/kwklover/archive/2007/01/13/bpoweroa_03_baseandworkflowdesign.html自从开源OA系统 ...

  4. bash之条件测试if/else

    bash之条件测试:     if/then结构         条件测试(CONDITION):         test EXPRESSION:测试条件表达式正确否         [ EXPRE ...

  5. VS重置开发环境的方法

    经常由于各种插件的原因,导致VS有使用过程中出现断点进不去等各种情况的时候,这个方法可以让你的VS回到最初安装的状态,当然,这时候,各种配置也没有了,不到万不得已就勿使用. 下面以Vs2015来说明: ...

  6. 在从1到n的正数中1出现的次数 【微软面试100题 第三十题】

    题目要求: 给定 一个十进制正整数N,写下从1开始,到N的所有整数,然后数一下其中出现的所有“1”的个数.    例如:N = 2,写下1,2.这样只出现了1个“1”.          N = 12 ...

  7. verilog写的LCD1602 显示

    在读本文之前,请先阅读 LCD1602 的 datasheet(百度到处都是) ,熟悉有关的11条指令集. LCD1602的11个指令集链接 http://www.cnblogs.com/aslmer ...

  8. [git 学习篇] --创建git创库

    http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/0013743256916071d ...

  9. [python subprocess学习篇] 调用系统命令

    http://www.jb51.net/article/57208.htm 3).Popen.communicate(input=None):与子进程进行交互.向stdin发送数据,或从stdout和 ...

  10. java EE技术体系——CLF平台API开发注意事项(3)——API安全访问控制

    前言:提离职了,嗯,这么多年了,真到了提离职的时候,心情真的很复杂.好吧,离职阶段需要把一些项目中的情况说明白讲清楚,这篇博客就简单说一下在平台中对API所做的安全处理(后面讲网关还要说,这里主要讲代 ...