https://oj.leetcode.com/problems/maximum-subarray/

给了一个数组一列数,求其中的连续子数组的最大和。

O(n)复杂度

class Solution {
public:
int maxSubArray(int A[], int n) {
if(n == )
return ; int ans = INT_MIN;
int tempSum = INT_MIN;
for(int i = ; i<n; i++)
{
if(tempSum < )
tempSum = A[i]; //如果小于0,则前面的就都不要了
else
tempSum += A[i]; ans = max(tempSum,ans);
}
return ans;
}
};

LeetCode OJ-- Maximum Subarray @的更多相关文章

  1. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  2. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  3. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  5. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  6. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  7. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  8. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  9. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  10. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

随机推荐

  1. Python入门必学:递归函数正确的操作使用方法,案例详解

    递归函数,在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以 ...

  2. 动态规划:HDU2571-命运

    解题心得: 1.其实是一个简单的动态规划加上贪心的思想,思路简单,只需要求每一步的最大值就可以了,但是要注意读懂题. 2.走的规则:从左上角开始走,达到右下角,只能向右走一步,或者向下走一步,或者走列 ...

  3. 菜鸟学Linux - bash的配置文件

    bash是各大Linux发行版都支持的shell.当我们登陆bash的时候,虽然我们什么都没做,但是我们已经可以在bash中调用各种各样的环境变量了.这是因为,系统中已经定义了一系列的配置文件,以及加 ...

  4. 2 Model层 -定义模型

    1  ORM简介 MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库 ORM是“对象-关系-映射” ...

  5. loj2056 「TJOI / HEOI2016」序列

    当年我还没学cdq的时候在luogu上写过树套树的代码orzzz ref #include <algorithm> #include <iostream> #include & ...

  6. SPFA - Luogu 3385 【模板】负环

    [模板]负环 描述 找负环 输入 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w ...

  7. 将FragmentManger事务添加到返回栈中

    FragmentManger事务添加或替换的 Fragment 后,这时点击 Back 键,程序并不会返回添加之前的状态. 我们可以使用 Transaction 对象的 addToBackStack( ...

  8. C#环境下使用Windows消息传递字符串数据的研究

    前言: 日前,师兄交给了我一个课题,将一个后台运行的Console程序,修改为WindowsForm程序,并在其界面上增加配置设置,以及运行记录。 原来的Console程序,后台运行的流程在其中一个类 ...

  9. python-day5-装饰器第二弹之多层装饰器

    多层装饰器 #首先我们先实现一个简单的登陆与权限验证功能,注意看执行结果 USER_INFO = {} def check_login(func): def inner(*args,**kwargs) ...

  10. selenium随笔

    1.点击一个连接通常录制一个click命令,通常需要改变它到clickAndWait命令,确保案例暂停,新的页面完全被转载进来. 2.测试案例需要检查Web页的属性,需要assert和verify命令 ...