【机器学习】决策树C4.5、ID3
一、算法流程
step1:计算信息熵
step2: 划分数据集
step3: 创建决策树
step4: 利用决策树分类
二、信息熵Entropy、信息增益Gain
重点:选择一个属性进行分支。注意信息熵计算公式。
决策树作为典型的分类算法,基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。信息增益定义为结点与其子结点的信息熵之差。
1.信息熵计算公式
Pi为子集合中不同性(二元分类即正样例和负样例)的样例的比例。其中n代表有n个分类类别(比如假设是二分类问题,那么n=2)。分别计算着2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分支前的信息熵。
选中一个属性xi来进行分支,分支规则:如果xi=vx,则将样本分到树的一个分支;过不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分支后的总信息熵H’=p1*H1+p2*H2,那么此时的信息增益为ΔH=H-H’。以信息增益为原则,把所有的属性都测试一遍,选择一个使增益最大的属性作为本次分支属性。
2.信息增益计算公式
定义:样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力。
三、ID3算法
常规决策树通常为C4.5决策树,其核心是ID3算法。构造树的基本思想是随着树深度增加,节点的熵迅速地降低,熵降低的速度越快越好,目标就是构建高度最矮的决策树。根据信息熵减小的梯度顺序决定构建树节点。
四、几个对数换底公式
logc(A/B) = logcA -logcB
logAB = logcB / logcA
五、优缺点总结
优点:
1.计算量简单,可解释性强,比较适合处理有确实属性值的样本,能处理不相关的特征;
2.对中间值缺失不敏感,可以处理不相关特征数据
缺点:容易过拟合(改进的方案有RF随机森林,减小过拟合现象)
数据类型:数值型、标称型
六、决策树变种
决策树的剪枝可以减少过拟合的现象,但还是不够,更多的还是利用模型组合,决策树的几个变种GBRT和RF将在下面两篇文章中提到。
【机器学习】决策树C4.5、ID3的更多相关文章
- 深入了解机器学习决策树模型——C4.5算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第22篇文章,我们继续决策树的话题. 上一篇文章当中介绍了一种最简单构造决策树的方法--ID3算法,也就是每次选择一个特 ...
- 02-22 决策树C4.5算法
目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...
- 决策树(C4.5)原理
决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...
- 小啃机器学习(1)-----ID3和C4.5决策树
第一部分:简介 ID3和C4.5算法都是被Quinlan提出的,用于分类模型,也被叫做决策树.我们给一组数据,每一行数据都含有相同的结构,包含了一系列的attribute/value对. 其中一个属性 ...
- 用于分类的决策树(Decision Tree)-ID3 C4.5
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...
- python实现决策树C4.5算法(在ID3基础上改进)
一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...
- 机器学习决策树ID3算法,手把手教你用Python实现
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第21篇文章,我们一起来看一个新的模型--决策树. 决策树的定义 决策树是我本人非常喜欢的机器学习模型,非常直观容易理解 ...
- 机器学习-决策树之ID3算法
概述 决策树(Decision Tree)是一种非参数的有监督学习方法,它是一种树形结构,所以叫决策树.它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回 ...
- 决策树 -- C4.5算法
C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息 解释:数据集通过条件属性A的分离信息,其实和ID3中的熵: 2.信息增益率 解释:Gain(A)为获的A ...
随机推荐
- 【BZOJ1786】[Ahoi2008]Pair 配对 DP
[BZOJ1786][Ahoi2008]Pair 配对 Description Input Output Sample Input 5 4 4 2 -1 -1 3 Sample Output 4 题解 ...
- RTSP Windows专用播放器EasyPlayer : 稳定、兼容、高效、超低延时
EasyPlayer RTSP Windows专用播放器 EasyPlayer RTSP Windows 播放器是由EasyDarwin团队开发和维护的一个完善的RTSP流媒体播放器项目,视频编码支持 ...
- 宇视摄像机RTSP地址格式规则
rtsp://{用户名}:{密码}@{ip}:{port}/video1/2/3,分别对应主/辅/三码流: 比如: rtsp://admin:admin@192.168.8.8:554/video1, ...
- redis自启动
$ vi /etc/init.d/redis # chkconfig: 2345 90 10 # description: Redis is a persistent key-value databa ...
- JAVA Exception处理
原文地址:http://blog.csdn.net/hguisu/article/details/6155636 1. 引子 try…catch…finally恐怕是大家再熟悉不过的语句了,而且感觉用 ...
- Express的基本使用
前言 列表项目Express是一个简介而灵活的node.js Web应用框架提供的一系列强大特性帮助你创建各种 Web 应用,和丰富的HTTP工具. 正文 一个简单的express框架实例 ``` / ...
- ubuntu tomcat 配置及使用细节
1.改端口号(两个) vi server.xml 一个是http协议端口 <Connector port="8091" protocol="HTTP/1.1&qu ...
- smokeping高级配置
摘自: http://mayulin.blog.51cto.com/1628315/514367 自定义报警 http://www.cnblogs.com/thatsit/p/6395506.html
- BZOJ 3624 [Apio2008]免费道路:并查集 + 生成树 + 贪心【恰有k条特殊路径】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3624 题意: 给你一个无向图,n个点,m条边. 有两种边,种类分别用0和1表示. 让你求一 ...
- ES设置字段搜索权重——Query-Time Boosting
Query-Time Boosting In Prioritizing Clauses, we explained how you could use the boost parameter at s ...