坑了好多天的题,终于补上了

首先发现 \(i\) 这个点和 \(i-k\) 之前的点没有边,所以 \(i-k\) 之前的点肯定联通,只要处理中间 \(k\) 个点的联通状态就好了。我们用最小表示法,\(f[i]\) 表示最小的与 \(i\) 联通的点编号,发现状态最多有52种,然后枚举下一个点与那些点之间连边,得到转移方程,矩阵快速幂优化转移即可

(反正怎么说估计都听不懂,还是贴代码比较靠谱)

#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<cmath>
#include<iostream>
#include<queue>
#include<string>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<long long,long long> pll;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define rep(i,j,k) for(register int i=(int)(j);i<=(int)(k);i++)
#define rrep(i,j,k) for(register int i=(int)(j);i>=(int)(k);i--) ll read(){
ll x=0,f=1;char c=getchar();
while(c<'0' || c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0' && c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} const int mod=65521; ll n,k;
int tot,f[20],sta[100][20],a[20],cnt[100],num[20],edge[20]; struct Matrix{
int mat[60][60];
Matrix(int x){
memset(mat,0,sizeof(mat));
if(x) rep(i,1,tot) mat[i][i]=1;
}
Matrix operator*(Matrix ano){
Matrix ret(0);
rep(i,1,tot)
rep(j,1,tot)
rep(k,1,tot)
ret.mat[i][j]=(ret.mat[i][j]+mat[i][k]*1ll*ano.mat[k][j])%mod;
return ret;
}
Matrix operator^(ll k){
Matrix ret(1),xx(0);
memcpy(xx.mat,mat,sizeof(mat));
while(k){
if(k&1) ret=ret*xx;
xx=xx*xx;k>>=1;
}
return ret;
}
void pr(){
rep(i,1,tot){
rep(j,1,tot){
printf("%d ",mat[i][j]);
}
puts("");
}
puts("");
}
} trans(0); int ksm(int x,int p){
int ret=1;
while(p){
if(p&1) ret=ret*x;
x=x*x;
p>>=1;
}
return ret;
}
//处理当前状态的生成树个数
//公式 大小为n的完全图生成树个数为n^(n-2)
void calc(int x){
memset(f,0,sizeof(f));cnt[x]=1;
rep(i,1,k) f[sta[x][i]]++;
for(int i=1;f[i];i++) if(f[i]>2) cnt[x]*=ksm(f[i],f[i]-2);
}
//前x个分成了s个联通块的方案
void dfs1(int x,int s){
if(x==k+1){
tot++;
rep(i,1,k) sta[tot][i]=a[i];
calc(tot);return;
}
for(int i=1;i<=s+1;i++) a[x]=i,dfs1(x+1,max(i,s));
} inline bool issame(int x[],int b[]){
rep(i,1,k) if(x[i]!=b[i]) return 0;
return 1;
}
//求此时的状态是什么
inline void get1(int id){
memcpy(a,sta[id],sizeof(a));
rep(i,1,k){
if(edge[i]){
if(!a[k+1]) a[k+1]=a[i];
else{
int x=a[i];
rep(j,1,k) if(a[j]==x) a[j]=a[k+1];
}
}
}
rep(i,1,k) a[i]=a[i+1];
memset(num,0,sizeof(num));int num1=0;
rep(i,1,k){
if(!num[a[i]]) num[a[i]]=++num1;
a[i]=num[a[i]];
}
rep(i,1,tot) if(issame(a,sta[i])){
trans.mat[id][i]++;
return;
}
}
//求id能够转移到什么状态
void dfs2(int id,int x){
if(x==k+1){
get1(id);return;
}
dfs2(id,x+1); //不连k+1到x的边
if(!f[sta[id][x]]){ //k+1到这个联通块目前没有边,可以连
//连k+1到x的边
f[sta[id][x]]=1;edge[x]=1;
dfs2(id,x+1);
f[sta[id][x]]=0;edge[x]=0;
}
} int main(){
k=read(),n=read();
dfs1(1,0);
//处理转移
rep(i,1,tot){
memset(f,0,sizeof(f));
memset(edge,0,sizeof(edge));
bool flag=1;
rep(j,2,k) if(sta[i][j]==1){
flag=0;break;
}
if(flag){
//没有出现过与1相连的边,所以下一条边必须和1相连
f[1]=1;edge[1]=1;dfs2(i,2);
}
else dfs2(i,1);
}
trans=trans^(n-k);
ll ans=0;
rep(i,1,tot) ans=(ans+trans.mat[i][1]*1ll*cnt[i])%mod;
printf("%lld\n",ans);
return 0;
}

bzoj 1494 生成树计数的更多相关文章

  1. BZOJ 1494 生成树计数(生成树计数-矩阵)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1494 题意: 思路: int SIZE; struct matrix { i64 a[N] ...

  2. BZOJ 1016 生成树计数

    现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树 ...

  3. BZOJ 1002 生成树计数&高精度

    给你定义一种特殊的图 这种图总共有n个节点 假设编号为0~n-1 首先1~n-1排成环形 每个点与相邻的两个点有边 其次这n-1个节点每个和0节点有一条边 每次询问你一个n 要回到当前n节点的特殊图有 ...

  4. BZOJ1494 [NOI2007]生成树计数

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  5. [BZOJ1494][NOI2007]生成树计数 状压dp 并查集

    1494: [NOI2007]生成树计数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 451[Submit][Status][ ...

  6. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  7. 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status ...

  8. SPOJ 104 HIGH - Highways 生成树计数

    题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...

  9. Luogu P5296 [北京省选集训2019]生成树计数

    Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...

随机推荐

  1. 【 spring配置文件详解】

    转自: http://book.51cto.com/art/201004/193743.htm Spring配置文件是用于指导Spring工厂进行Bean生产.依赖关系注入(装配)及Bean实例分发的 ...

  2. -webkit-mask-box-image给框架加个同样大小的遮罩

    很棒的css属性,可以在div上方建个同大小的遮罩,配合线性变化gradient可以实现很酷的样式,比如:时间选择的UI组件,里面有个模糊的上方遮罩 手册地址:https://developer.mo ...

  3. Experimental Educational Round: VolBIT Formulas Blitz K. Indivisibility —— 容斥原理

    题目链接:http://codeforces.com/contest/630/problem/K K. Indivisibility time limit per test 0.5 seconds m ...

  4. codeforces B. George and Round 解题报告

    题目链接:http://codeforces.com/contest/387/problem/B 题目意思:给出1-n个问题,以及要满足是good rounde条件下这n个问题分别需要达到的compl ...

  5. c# 容器类简介

    c# 容器类简介   C# 中主要有两类容器:一个是 System.Array 类(参阅:http://msdn.microsoft.com/library/default.asp?url=/libr ...

  6. yii中渲染模板时render与renderPartial的区别

    render方法在渲染模板时会将渲染布局文件,而renderPartial则不会渲染布局

  7. RTMP协议的理解

    RTMP协议:real time message protocol 工作原理: 先采集摄像头视频和麦克风音频信息,再进行音视频的编码(mpeg),通过FMLE(Flash Media Live Enc ...

  8. CISCO-配置SSH

    PC直接连在交换机端口上,PC的ip地址是:192.168.1.1/24 在交换机的操作步骤如下: 1.设置交换机管理ip Switch#conf t Switch(config)#int vlan ...

  9. 「NOIP2002」「Codevs1099」 字串变换(BFS

    1099 字串变换 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 已知有两个字串 $A$, ...

  10. Linux下启动mongodb

    完成安装mongodb(略) 创建数据目录: # mkdir /data/mongo 创建配置文件 # vi /data/mongo/mongodb.cnf dbpath=/data/mongo/ l ...