Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/8


前面都是对一两个样本的检查,现在考虑k个样本的情况,我们的假设是:

  • Analysis of Variance (ANOVA)

assumptions are:

  1. Groups are independent
  2. Distributions are Normally distributed
  3. Groups have equal variances

那么我们的假设就是:

H0:μ1=μ2=μ3
H1:at least one not equal

R里面使用anova函数,具体可以参见以前的代码。(计算α多样性指数中的Simpson Index)

simpsonBox = read.csv("simpsonIndex1.csv")
Group = factor(c(rep(1,21), rep(22,21), rep(43,20)), labels = c("A", "B", "C"))
simpsonData = data.frame(simpsonIndex = simpsonBox$x, group = Group)
# 非参数检验,检查方差是否相同
fligner.test(shannonIndex ~ group, data = shannonData)
# 正态分布的数据,检查方差是否相同
bartlett.test(simpsonIndex ~ group, data = simpsonData)
# anova
simpsonAov <- aov(simpsonIndex ~ group, data = simpsonData)
summary(simpsonAov)

  

  • 非参数的方法则是kruskal test

kruskal.test


上面的anova分析之后,如果我们拒绝了原假设,知道几个组的均值是不同的,那么两两组之间,它们差异的显著性如何?

就像之前做过的TukeyHSD(要求数据正态分布),我们还可以做

  • Bonferroni Adjustment

The Bonferroni adjustment simply divides the Type I error rate (.05) by the number of tests (in this case, three).

pairwise.t.test(simpsonData$simpsonIndex,simpsonData$group,p.adjust="bonferroni")

  我们可以比较一下,它和TukeyHSD在结果上的差别:

其实结果是一致的,都说明C组与A组的差异显著。一般认为Bonferroni更保守。我们使用的函数可以参照:

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/pairwise.t.test.html


  • Holm Adjustment

这篇文章指出,Holm Adjustment比Bonferroni更好,同样使用pairwise.t.test函数。

Ref: http://rtutorialseries.blogspot.jp/2011/03/r-tutorial-series-anova-pairwise.html

  • The Fisher Least Significant Difference (LSD) method essentially does not correct for the Type I error rate

for multiple comparisons and is generally not recommended relative to other options.

library(agricolae)
LSD.test()

  

Applied Nonparametric Statistics-lec6的更多相关文章

  1. Applied Nonparametric Statistics-lec10

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/14 估计CDF The Empirical CDF ...

  2. Applied Nonparametric Statistics-lec9

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/12 前面我们考虑的情况是:response是连续的, ...

  3. Applied Nonparametric Statistics-lec8

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/11 additive model value = t ...

  4. Applied Nonparametric Statistics-lec7

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/9 经过前面的步骤,我们已经可以判断几个样本之间是否 ...

  5. Applied Nonparametric Statistics-lec5

    今天继续two-sample test Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/6 Mann ...

  6. Applied Nonparametric Statistics-lec4

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/5 Two sample test 直接使用R的t- ...

  7. Applied Nonparametric Statistics-lec3

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/4 使用非参数方法的优势: 1. 对总体分布做的假设 ...

  8. Applied Nonparametric Statistics-lec2

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/3 The Binomial Distributio ...

  9. Applied Nonparametric Statistics-lec1

    参考网址: https://onlinecourses.science.psu.edu/stat464/node/2 Binomial Distribution Normal Distribution ...

随机推荐

  1. Jmeter JDBC Request的使用

    1. JDBC Request 这个Sampler可以向数据库发送一个jdbc请求(sql语句),并获取返回的数据库数据进行操作.它经常需要和JDBC Connection Configuration ...

  2. LWIP学习之一些细节

    一 绑定端口后,开启监听,为何监听还要返回一个新的连接?:监听状态的连接只需要很小的内存,于是tcp_listen()就会收回原始连接的内存,而重新分配一个较小内存块供处于监听状态的连接使用. 二 t ...

  3. Ubuntu常用指令集

    Ubuntu Linux 操作系统常用命令详细介绍 ( 1)Udo apt-get install 软件名 安装软件命令 sudo nautilus 打开文件(有 root 权限)su root 切换 ...

  4. nodejs 实践:express 最佳实践(三) express 解析

    nodejs 实践:express 最佳实践(三) express 解析 nodejs 发展很快,从 npm 上面的包托管数量就可以看出来.不过从另一方面来看,也是反映了 nodejs 的基础不稳固, ...

  5. go 从表结构生成结构体

    package main import ( "fmt" "github.com/gohouse/converter" ) func main() { // 初始 ...

  6. webpack.config.js====插件clean-webpack-plugin

    1. 安装:主要是用来清除重复文件,生成最新的的插件 就是说在编译文件的时候,先把 build或dist (就是放生产环境用的文件) 目录里的文件先清除干净,再生成新的带有hash值的文件 cnpm ...

  7. springboot 学习笔记(二)

    springboot 学习笔记(二) 快速创建一个springboot工程,并引入所需要的依赖 1.利用Spring initializr 来创建一个springboot项目,登陆http://sta ...

  8. hive中select中DISTINCT的技巧和使用

    hive中select中DISTINCT的技巧和使用 单表的唯一查询用:distinct 多表的唯一查询用:group by 在使用MySQL时,有时需要查询出某个字段不重复的记录,虽然mysql提供 ...

  9. jQuery动态追加移除CSS样式

    jQuery基础知识,动态添加删除CSS样式 <!DOCTYPE html> <html lang="en"> <head> <meta ...

  10. 百度地图web 笔记

    1.marker点击事件获取marker的title和lebal等信息 marker.setTitle(title); marker.setLabel(label); marker.addEventL ...