[bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流)
Description

Input

Output
一个整数表示联盟里所有球队收益之和的最小值。
Sample Input
3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1
Sample Output
43
Hint

Solution
这题费用流裸题好吧。
先假设所有队在接下来的比赛中都会输掉,算出收益。
但是一场比赛应该有且只有一支球队赢得比赛,所以真实收益和我们算出来的收益就会有一些差值,再计算最小的差值即可。
我们可以发现,队伍\(i\)每赢得一场比赛,就会多获得\(C_i * (2 * Win_i + 1) - D_i * (2 * Lost_i - 1)\) 的收益,并且由于赢得越多,\(Win_i\)就会越大,\(Lost_i\)就会越小,所以获得的收益差值就会越来越大。 于是我们可以建立一个最小费用最大流的模型。
- 我们建立一个源点,向所有比赛建一条流量为1,费用为0的边。
- 从比赛向其两支球队建立一条流量为1,费用为0的边。
- 从每支球队向汇点建x(x是该支球队参加的比赛数)条边,每条边流量为1,费用每赢一场的差值。
PS: 这里要注意一点,差值会随着赢的场数增多而增多,所以最小费用最大流一定会先走赢第一场,再走第二场,第三场,等等。。。这是算法正确性的关键。
建好图,然后跑一遍最小费用最大流,加上之前的答案,这题就完了。
Code
#include <cstdio>
#include <queue>
#include <iostream>
using namespace std;
const int maxn = 5e3 + 10, maxm = 1e3 + 10, inf = 1e9 + 7;
int n, m, S, T, cnt;
int w[maxn], l[maxn], a[maxn], b[maxn], x[maxn];
int dis[maxn+maxm], inq[maxn+maxm];
queue<int> q;
struct edge {int u, v, f, c; edge *next, *rev;} e[maxn<<1], *head[maxn+maxm], *from[maxn+maxm];
inline void adde(int u, int v, int flow, int cost) {
e[cnt] = (edge){u, v, flow, cost, head[u], &e[cnt+1]}, head[u] = &e[cnt++];
e[cnt] = (edge){v, u, 0, -cost, head[v], &e[cnt-1]}, head[v] = &e[cnt++];
}
bool spfa() {
while(!q.empty()) q.pop();
for(int i = 1; i <= m + n + 1; i++) dis[i] = inf, inq[i] = 0, from[i] = NULL;
dis[S] = 0, inq[S] = 1; q.push(S);
while(!q.empty()) {
int u = q.front(); q.pop(), inq[u] = 0;
for(edge *k = head[u]; k; k = k->next) if(k->f) {
if(dis[k->v] > dis[u] + k->c) {
dis[k->v] = dis[u] + k->c;
from[k->v] = k;
if(!inq[k->v]) inq[k->v] = 1, q.push(k->v);
}
}
}
return dis[T] != inf;
}
int mcf() {
int res = 0, xx = inf;
for(edge *k = from[T]; k; k = from[k->u]) xx = min(xx, k->f);
for(edge *k = from[T]; k; k = from[k->u])
res += xx * k->c, k->f -= xx, k->rev->f += xx;
return res;
}
int main() {
int u, v;
scanf("%d%d", &n, &m);S = 0, T = n + m + 1;
for(int i = 1; i <= n; i++) scanf("%d%d%d%d", w+i, l+i, a+i, b+i);
for(int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
l[u]++, l[v]++;
x[u]++, x[v]++;
adde(S, n+i, 1, 0);
adde(n + i, u, 1, 0);
adde(n + i, v, 1, 0);
}
int ans = 0;
for(int i = 1; i <= n; i++) {
ans += w[i] * w[i] * a[i] + l[i] * l[i] * b[i];
for(int j = 0; j < x[i]; j++)
adde(i, T, 1, a[i]*(2*w[i]+1) - b[i] * (2 * l[i] - 1)),
w[i]++, l[i]--;
}
while(spfa()) ans += mcf();
printf("%d\n", ans);
return 0;
}
[bzoj 1449] 球队收益(费用流)的更多相关文章
- BZOJ 1449 JSOI2009 球队收益 费用流
题目大意:给定nn支球队.第ii支球队已经赢了winiwin_i场.输了loseilose_i场,接下来还有mm场比赛.每一个球队终于的收益为Ci∗x2i+Di∗y2iC_i*x_i^2+D_i*y_ ...
- BZOJ 1449 球队收益(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1449 题意: 思路:首先,我们假设后面的M场比赛两方都是输的,即初始时的lose[i]再 ...
- 【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 题解 费用流 由于存在一 ...
- 【BZOJ1449&&2895】球队预算 [费用流]
球队预算 Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 在一个篮球联赛里,有n支球队, 球 ...
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
- BZOJ 1070 修车 【费用流】
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...
- BZOJ 1930 吃豆豆(费用流)
首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...
随机推荐
- 洛谷—— P2895 [USACO08FEB]流星雨Meteor Shower
P2895 [USACO08FEB]流星雨Meteor Shower 题目描述 Bessie hears that an extraordinary meteor shower is coming; ...
- HDU 1045 Fire Net 状压暴力
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others) ...
- mybatis ----SqlSessionManager
今天我们来看看这个类 有些写法还是很经典的 public class SqlSessionManager implements SqlSessionFactory, SqlSession { priv ...
- 【spring boot】在Spring mvc中controller中可以拿到对象信息,但是返回给前台却是什么也没有,解决方案
如图所示: 最后: 问题解决: 这个原因是因为,User类并未给字段提供get/set方法,所以给前台传递过去的值是空的. 解决方案: 为User类添lombok的注解@Data,为实体类提供get/ ...
- ubuntu安装常用软件
安装unzip sudo apt-get install unzip
- C#如何生成release版本的程序,生成debug版本的程序
除了右击项目在生成中配置改成Release还要在顶部切换成Release
- Solaris服务管理
远程登录协议 telnet \ssh 等.当然我们可以查看谁登录过我的系统,以及可以利用ftp记录日志. 一.SMF: 服务管理工具 优点:自动恢复意外终止的服务,支持服务的依赖关系,一个服务可以有多 ...
- Windows下编程2----- C语言常用函数举例
几个小函数 1. //MessageBoxA(0,"网络故障,重新登录","qq error",3); //弹出对话框 2. //ShellExec ...
- Amazon SNS移动推送更新——新增百度云推送和Windows平台支持
Amazon SNS(Simple Notification Service)是一种基于云平台的消息通知和推送服务. SNS提供简单的 Web 服务接口和基于浏览器的管理控制台让用户可以简易设置.执行 ...
- 7.2 HAVING子句
7.2 HAVING子句正在更新内容.请稍后