应当认为,有向无环图上的动态规划问题是动态规划的基本模型之一,对于某个模型,如果可以转换为某一有向无环图的最长、最短路径问题,则可以套用动态规划若干方法解决。

原题参见刘汝佳紫薯267页。

在这个题目中,首先将整个模型规划成为有向无环图的模式:
1,对于某小特工,于j时间处在在第i站,可以成为一个独立的状态,也就是有向无环图的一个节点。

2,对于每个节点,可能能够走得有三个不同的边——坐火车往左走,进入左边的某个状态;坐火车往右走,进入右边的某个状态;原地等待,进入该站点的下一个时间。

每条边,拥有权重——坐火车边权位0,但是原地等待边权位1.,由此,可以将动态规划的问题描述成为一个有向无环图上的寻路问题。直觉上至少可以使用最短路算法。

但是对于有向无环图情况,可以进行特殊的优化:使用直接刷表法求得。

之前,我们大多使用“对于每个节点进行扫描的时候更新该节点的所有子节点中某值,从而使得,该节点得到最优解”。但是很多时候,并不一定可以使用这种思路来进行很直观的赋值。在这种情况下,我们可以退而求其次,通过若干次计算,在到达某一节点之后“更新”可能直接到达的节点的边权,从而得到,我们需要的最值。

这道题在做的时候,感觉到有些比较深的坑——例如初始化的故事。

AC代码:

#include<bits/stdc++.h>
using namespace std; const long long MAXN=;
const long long INF=1e9+;
long long n,t,m1,m2;
long long ti[MAXN];
long long d1[MAXN];
long long d2[MAXN];
bool check[MAXN][MAXN][];
long long dp[MAXN][MAXN]; long long ca=;
void init()
{
memset(check,,sizeof(check));
memset(ti,,sizeof(ti));
memset(d1,,sizeof(d1));
memset(d2,,sizeof(d2));
cin>>t;
for(int i=;i<n-;++i) cin>>ti[i];
cin>>m1;
for(int i=;i<m1;++i) cin>>d1[i];
cin>>m2;
for(int i=;i<m2;++i) cin>>d2[i];
check[][d1[]][]=;check[n-][d2[]][]=; for(int i=;i<MAXN;++i)
{
for(int j=;j<MAXN;++j)dp[i][j]=INF;
}long long time=;
for(int i=;i<n-;++i)
{ for(int j=;j<m1;++j)
{
check[i][d1[j]+time][]=;
// cout<<"left: "<<i<<ends<<d1[j]+time<<endl;
}time+=ti[i];
}
time=;
for(int i=n-;i;--i)
{
time+=ti[i];
for(int j=;j<m2;++j)
{
check[i][d2[j]+time][]=;
// cout<<"right: "<<i<<ends<<d2[j]+time<<endl;
}
}dp[][]=;
for(int j=;j<=t;++j)
{
for(int i=;i<n;++i)
{
if(dp[i][j]>=INF)continue;
dp[i][j+]=min(dp[i][j]+,dp[i][j+]);
if(i<n-&&check[i][j][])dp[i+][j+ti[i]]=min(dp[i][j],dp[i+][j+ti[i]]);//,cout<<"check_left "<<i<<ends<<j<<ends<<dp[i][j]<<endl;
if(i&&check[i][j][])dp[i-][j+ti[i-]]=min(dp[i][j],dp[i-][j+ti[i-]]);//,cout<<"check_right "<<i<<ends<<j<<ends<<dp[i][j]<<endl;
}
}
cout<<"Case Number "<<ca++<<": ";
if(dp[n-][t]<INF)cout<<dp[n-][t]<<"\n";
else cout<<"impossible\n"; } int main()
{
cin.sync_with_stdio(false);
while(cin>>n&&n)init(); return ;
}

UVA_1025 a Spy in the Metro 有向无环图的动态规划问题的更多相关文章

  1. UVA - 1025 A Spy in the Metro[DP DAG]

    UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...

  2. 洛谷2583 地铁间谍 (UVa1025A Spy in the Metro)

    洛谷2583 地铁间谍(UVa1025A Spy in the Metro) 本题地址:http://www.luogu.org/problem/show?pid=2583 题目描述 特工玛利亚被送到 ...

  3. UVA1025-A Spy in the Metro(动态规划)

    Problem UVA1025-A Spy in the Metro Accept: 713  Submit: 6160Time Limit: 3000 mSec Problem Descriptio ...

  4. uva 1025 A Spy in the Metro 解题报告

    A Spy in the Metro Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug Secr ...

  5. uva A Spy in the Metro(洛谷 P2583 地铁间谍)

    A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especially dangero ...

  6. UVA 1025 -- A Spy in the Metro (DP)

     UVA 1025 -- A Spy in the Metro  题意:  一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, ...

  7. UVa 1025 A Spy in the Metro(动态规划)

    传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...

  8. UVA1025---A Spy in the Metro(DP)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913 Secret agent Maria was sent to Alg ...

  9. UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】

    Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After s ...

随机推荐

  1. SpringMVC04 很杂很重要(注解,乱码处理,通配符,域属性调用,校正参数名称,访问路径,请求、响应携带参数,请求方法)

    1.导入架包 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3 ...

  2. ABAP WRITE

    1.空行 WRITE /. 2.AS CHECKBOX VALUE 'X', check2 VALUE ' '. START-OF-SELECTION. WRITE: / check1 AS CHEC ...

  3. Lua学习---函数定义

    1.函数定义的格式: Lua使用function定义函数,语法如下: function function_name (arc) --arc表示参数列表,函数的参数列表可以为空 --body end 上 ...

  4. 卸载VS2013 2015

    我有两个VS,特别讨厌,每当使用window程序删除时候,就出现 停止工作! 然后从知乎上发现了这个 https://github.com/Microsoft/VisualStudioUninstal ...

  5. python字符串及字符串操作

    字符串介绍 1.字符串在内存中的存储: 2.字符串相加: 3.字符串的格式化: In [1]: a = 100 In [2]: a Out[2]: 100 #100<255,在堆内存下占用了一个 ...

  6. org.hibernate.HibernateException: Unable to get the defa

    今天整合SSH框架时出现了这个问题,以前一直没注意,在网上找了一下解决方案,找到了问题的解决方法,特记录如下: 1.原因:在中,javax.persistence.validation.mode默认情 ...

  7. 初学基础python记录

    1.对于python来说,最重要的就是缩进.相当于其他语言的{}中括号. 2.转义快捷等 alt+p和alt+n来复制上下一行.变量使用时得先赋值,且大小写敏感,遵循变量命名规则.Python还允许用 ...

  8. Spark性能优化——和shuffle搏斗

    Spark的性能分析和调优很有意思,今天再写一篇.主要话题是shuffle,当然也牵涉一些其他代码上的小把戏. 以前写过一篇文章,比较了几种不同场景的性能优化,包括portal的性能优化,web se ...

  9. 制作带复选框的ListView控件

    实现效果: 知识运用   ListView控件的GridLines //设置是否在ListView控件中显示网格线 public bool GridLines{get;set} 和CheckBoxes ...

  10. 删除临时文件的bat文件

    @echo offecho 正在清除系统垃圾文件,请稍等......del /f /s /q %systemdrive%\*.tmpdel /f /s /q %systemdrive%\*._mpde ...