TopK问题是指从大量数据(源数据)中获取最大(或最小)的K个数据。

TopK问题是个很常见的问题:例如学校要从全校学生中找到成绩最高的500名学生,再例如某搜索引擎要统计每天的100条搜索次数最多的关键词。

对于这个问题,解决方法有很多:

方法一:对源数据中所有数据进行排序,取出前K个数据,就是TopK。

但是当数据量很大时,只需要k个最大的数,整体排序很耗时,效率不高。

方法二:维护一个K长度的数组a[],先读取源数据中的前K个放入数组,对该数组进行升序排序,再依次读取源数据第K个以后的数据,和数组中最小的元素(a[0])比较,如果小于a[0]直接pass,大于的话,就丢弃最小的元素a[0],利用二分法找到其位置,然后该位置前的数组元素整体向前移位,直到源数据读取结束。

这比方法一效率会有很大的提高,但是当K的值较大的时候,长度为K的数据整体移位,也是非常耗时的。

对于这种问题,效率比较高的解决方法是使用最小堆。

最小堆(小根堆)是一种数据结构,它首先是一颗完全二叉树,并且,它所有父节点的值小于或等于两个子节点的值。

最小堆的存储结构(物理结构)实际上是一个数组。如下图:

堆有几个重要操作:

BuildHeap:将普通数组转换成堆,转换完成后,数组就符合堆的特性:所有父节点的值小于或等于两个子节点的值。

Heapify(int i):当元素i的左右子树都是小根堆时,通过Heapify让i元素下降到适当的位置,以符合堆的性质。

回到上面的取TopK问题上,用最小堆的解决方法就是:先去源数据中的K个元素放到一个长度为K的数组中去,再把数组转换成最小堆。再依次取源数据中的K个之后的数据和堆的根节点(数组的第一个元素)比较,根据最小堆的性质,根节点一定是堆中最小的元素,如果小于它,则直接pass,大于的话,就替换掉跟元素,并对根元素进行Heapify,直到源数据遍历结束。

最小堆的实现:

public class MinHeap
{
// 堆的存储结构 - 数组
private int[] data;

// 将一个数组传入构造方法,并转换成一个小根堆
public MinHeap(int[] data)
{
this.data = data;
buildHeap();
}

// 将数组转换成最小堆
private void buildHeap()
{
// 完全二叉树只有数组下标小于或等于 (data.length) / 2 - 1 的元素有孩子结点,遍历这些结点。
// *比如上面的图中,数组有10个元素, (data.length) / 2 - 1的值为4,a[4]有孩子结点,但a[5]没有*
for (int i = (data.length) / 2 - 1; i >= 0; i--)
{
// 对有孩子结点的元素heapify
heapify(i);
}
}

private void heapify(int i)
{
// 获取左右结点的数组下标
int l = left(i);
int r = right(i);

// 这是一个临时变量,表示 跟结点、左结点、右结点中最小的值的结点的下标
int smallest = i;

// 存在左结点,且左结点的值小于根结点的值
if (l < data.length && data[l] < data[i])
smallest = l;

// 存在右结点,且右结点的值小于以上比较的较小值
if (r < data.length && data[r] < data[smallest])
smallest = r;

// 左右结点的值都大于根节点,直接return,不做任何操作
if (i == smallest)
return;

// 交换根节点和左右结点中最小的那个值,把根节点的值替换下去
swap(i, smallest);

// 由于替换后左右子树会被影响,所以要对受影响的子树再进行heapify
heapify(smallest);
}

// 获取右结点的数组下标
private int right(int i)
{
return (i + 1) << 1;
}

// 获取左结点的数组下标
private int left(int i)
{
return ((i + 1) << 1) - 1;
}

// 交换元素位置
private void swap(int i, int j)
{
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}

// 获取对中的最小的元素,根元素
public int getRoot()
{
return data[0];
}

// 替换根元素,并重新heapify
public void setRoot(int root)
{
data[0] = root;
heapify(0);
}
}

利用最小堆获取TopK:

public class TopK
{
public static void main(String[] args)
{
// 源数据
int[] data = {56,275,12,6,45,478,41,1236,456,12,546,45};

// 获取Top5
int[] top5 = topK(data, 5);

for(int i=0;i<5;i++)
{
System.out.println(top5[i]);
}
}

// 从data数组中获取最大的k个数
private static int[] topK(int[] data,int k)
{
// 先取K个元素放入一个数组topk中
int[] topk = new int[k];
for(int i = 0;i< k;i++)
{
topk[i] = data[i];
}

// 转换成最小堆
MinHeap heap = new MinHeap(topk);

// 从k开始,遍历data
for(int i= k;i<data.length;i++)
{
int root = heap.getRoot();

// 当数据大于堆中最小的数(根节点)时,替换堆中的根节点,再转换成堆
if(data[i] > root)
{
heap.setRoot(data[i]);
}
}

return topk;
}
}

Java最小堆解决TopK问题的更多相关文章

  1. 最大堆 最小堆 解决TOPK问题

    堆:实质是一颗完全二叉树,最大堆的特点:父节点值均大于子节点:最小堆的父节点值均小于子节点: 一般使用连续内存存储堆内的值,因而可以根据当前节点的索引值推断子节点的索引值: 节点i的父节点为(i-1) ...

  2. scala写算法-用小根堆解决topK

    topK问题是指从大量数据中获取最大(或最小)的k个数,比如从全校学生中寻找成绩最高的500名学生等等. 本问题可采用小根堆解决.思路是先把源数据中的前k个数放入堆中,然后构建堆,使其保持堆序(可以简 ...

  3. heapsort(Java)(最小堆)

    public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...

  4. Java解决TopK问题(使用集合和直接实现)

    在处理大量数据的时候,有时候往往需要找出Top前几的数据,这时候如果直接对数据进行排序,在处理海量数据的时候往往就是不可行的了,而且在排序最好的时间复杂度为nlogn,当n远大于需要获取到的数据的时候 ...

  5. 使用加强堆结构解决topK问题

    作者:Grey 原文地址: 使用加强堆结构解决topK问题 题目描述 LintCode 550 · Top K Frequent Words II 思路 由于要统计每个字符串的次数,以及字典序,所以, ...

  6. c++/java/python priority_que实现最大堆和最小堆

    #include<iostream>#include<vector>#include<math.h>#include<string>#include&l ...

  7. Google 面试题:Java实现用最大堆和最小堆查找中位数 Find median with min heap and max heap in Java

    Google面试题 股市上一个股票的价格从开市开始是不停的变化的,需要开发一个系统,给定一个股票,它能实时显示从开市到当前时间的这个股票的价格的中位数(中值). SOLUTION 1: 1.维持两个h ...

  8. java实现最小堆

    1.堆:通常通过二叉堆,实为二叉树的一种,分为最小堆和最大堆,具有以下性质: 任意节点小于它的所有后裔,最小元在堆的根上. 堆总是一棵完全树 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小 ...

  9. 【Java】 用PriorityQueue实现最大最小堆

    PriorityQueue(优先队列),一个基于优先级堆的无界优先级队列. 实际上是一个堆(不指定Comparator时默认为最小堆),通过传入自定义的Comparator函数可以实现大顶堆. Pri ...

随机推荐

  1. SpringBoot | 第二十五章:日志管理之自定义Appender

    前言 前面两章节我们介绍了一些日志框架的常见配置及使用实践.一般上,在开发过程中,像log4j2.logback日志框架都提供了很多Appender,基本上可以满足大部分的业务需求了.但在一些特殊需求 ...

  2. java(itext) 一个很简单的PDF表格生成工具

    先上个效果图 因为做的项目涉及到数据预测,其中有大量打印业务来支撑实体店的运营,因为注重的是数据,要求简洁,清晰,所以写了个很简单也很实用的工具类. 如果需要编写样式或者插入背景,都可以查阅itex官 ...

  3. 命名空间namespace、smarty使用(视图分离,MVC)、smarty模板语法、smarty缓存、MVC模式

    一.命名空间:namespace 命名空间 可以理解为逻辑上的使用,为了防止重名 namespace :关键字 加载:require_once();//加载一次 include_once() 申明命名 ...

  4. 进程的基础理论、并发(multiprocessing模块)

    一.粘包优化方案 之前我们解决粘包的方式是用struct模块来制作一个报头,但是这个解决的方案是有漏洞的,当我们需要传送的文件大于2g时将会报错.所以我们今天将用json来制作报头. from soc ...

  5. python基本数据类型,int,bool,str

    一丶python基本数据类型 1.int 整数,主要用来进行数学运算. 2.str 字符串,可以保存少量数据并进行相应的操作 3.bool 判断真假.True.False 4.list 存储大量数据, ...

  6. Nobody gives away anything valuable for free.

    Nobody gives away anything valuable for free.没人会给你免费的午餐.

  7. Windows 10 取消桌面右键“图像属性”、“图像选项”

    Windows 10 取消桌面右键"图像属性"."图像选项" 桌面右键 说明:在windows 10中,桌面右键出现"图像属性"." ...

  8. EEC 欧姆龙PLC输入模块算法

        Option Explicit Public MyArray(20000) As Integer Public MyArraySensor(20000) As Integer Sub 生成输入 ...

  9. 【BZOJ1076】[SCOI2008] 奖励关(状压DP)

    点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...

  10. 五、react中父子组件间如何传值

    1.父组件向子组件传递数据:父组件绑定属性值传给子组件,子组件通过this.props()接受. 2.子组件向父组件传递数据:子组件绑定一个方法,方法中通过this.props.父组件方法名(参数)传 ...