【BZOJ4561】[JLoi2016]圆的异或并

Description

在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面积并。异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑。

Input

第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的圆。保证|x|,|y|,≤10^8,r>0,N<=200000

Output

仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。

Sample Input

2
0 0 1
0 0 2

Sample Output

3

题解:首先有一个非常重要的性质,由于所有圆不相交,所以任何时候所有圆的相对位置是不变的。

然后,我们对将个圆拆成加入和删除两个事件,左边加入右边删除。加入时相当于在set中加入了上下两个圆弧。然后用扫描线从左到右扫描,当加入一个圆时,在set中找到它外面的一层圆,则当前圆的符号=-外层圆的符号。特别地,如果我们在当前圆的上面找到了一个下半圆,则说明它和那个圆的关系是并列的,所以符号相同。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <cmath>
using namespace std;
const int maxn=200010;
typedef long long ll;
int n,now;
int x[maxn],y[maxn],r[maxn],f[maxn];
ll ans;
struct edgex
{
int v,k;
edgex() {}
edgex(int a,int b){v=a,k=b;} }p[maxn<<1];
bool operator < (edgex a,edgex b)
{
int pa=x[a.v]+a.k*r[a.v],pb=x[b.v]+b.k*r[b.v];
return pa<pb;
}
struct edgey
{
int v,k;
edgey() {}
edgey(int a,int b){v=a,k=b;}
double gety()
{
return y[v]+k*sqrt(1.0*r[v]*r[v]-1.0*(x[v]-now)*(x[v]-now));
}
};
bool operator < (edgey a,edgey b)
{
double ya=a.gety(),yb=b.gety();
if(fabs(ya-yb)<1e-7) return a.k<b.k;
return ya<yb;
}
set<edgey> s;
set<edgey>::iterator it;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i;
for(i=1;i<=n;i++) x[i]=rd(),y[i]=rd(),r[i]=rd(),p[i]=edgex(i,-1),p[i+n]=edgex(i,1);
sort(p+1,p+2*n+1);
for(i=1;i<=2*n;i++)
{
if(p[i].k==-1)
{
edgey t1(p[i].v,-1),t2(p[i].v,1);
it=s.upper_bound(t2);
if(it!=s.end()) f[p[i].v]=-f[(*it).v];
else f[p[i].v]=1;
s.insert(t1),s.insert(t2);
}
else s.erase(edgey(p[i].v,-1)),s.erase(edgey(p[i].v,1));
}
for(i=1;i<=n;i++) ans+=(ll)f[i]*r[i]*r[i];
printf("%lld",ans);
return 0;
}

【BZOJ4561】[JLoi2016]圆的异或并 扫描线的更多相关文章

  1. [BZOJ4561][JLOI2016]圆的异或并(扫描线)

    考虑任何一条垂直于x轴的直线,由于圆不交,所以这条直线上的圆弧构成形似括号序列的样子,且直线移动时圆之间的相对位置不变. 将每个圆拆成两边,左端加右端删.每次加圆时考虑它外面最内层的括号属于谁.用se ...

  2. BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*

    BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...

  3. bzoj4561: [JLoi2016]圆的异或并 圆的扫描线

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...

  4. bzoj4561: [JLoi2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...

  5. BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线

    扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...

  6. BZOJ4561 JLOI2016圆的异或并(扫描线+平衡树)

    考虑一条扫描线从左到右扫过这些圆.观察某一时刻直线与这些圆的交点,可以发现构成一个类似括号序列的东西,括号的包含关系与圆的包含关系是相同的.并且当扫描线逐渐移动时,括号间的相对顺序不变.于是考虑用se ...

  7. BZOJ4561: [JLoi2016]圆的异或并 计算几何+treap

    因为本题保证两圆之间只有相包含或相离(不用担心两圆重合 因为我没有RE) 所以每个圆之间的相对位置是确定的  也就是可以按极角排序的, 所以可以按横坐标排序后 扫描同时用treap维护加圆删圆(即遇到 ...

  8. BZOJ 4561: [JLoi2016]圆的异或并 扫描线 + set

    看题解看了半天...... Code: #include<bits/stdc++.h> #define maxn 200010 #define ll long long using nam ...

  9. 【BZOJ-4561】圆的异或并 set + 扫描线

    4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 254  Solved: 118[Submit][Statu ...

随机推荐

  1. bzoj 2791 [Poi2012]Rendezvous 基环森林

    题目大意 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...

  2. Solr5.2.1+Zookeeper3.4.9分布式集群搭建

    1.选取三台服务器 由于机器比较少,现将zookeeper和solr都部署在以下三台机器上.(以下操作都是在172.16.20.101主节点上进行的哦) 172.16.20.101 主节点 172.1 ...

  3. AC日记——爱情之路 codevs 2070

    2070 爱情之路  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description yh非常想念他的女朋友小y,于是他 ...

  4. WCF的学习之旅

    一.WCF的简单介绍  Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是MS为SOA (S ...

  5. 微信小程序 wx.navigateTo()传参及多个参数方法

    var workModeAndPriceList = res.data.data.workModeAndPriceList; //var result = JSON.stringify(workMod ...

  6. 【APIO2015】Jakarta Skyscrapers

    题目描述 印尼首都雅加达市有 $N$ 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 $0$ 到 $N − 1$.除了这 $N$ 座摩天楼外,雅加达市没有其他摩天楼. 有 $M$ 只叫做 ...

  7. 搭建高可用服务注册中心-Spring Cloud学习第一天(非原创)

    文章大纲 一.Spring Cloud基础知识介绍二.创建单一的服务注册中心三.创建一个服务提供者四.搭建高可用服务注册中心五.项目源码与参考资料下载六.参考文章   一.Spring Cloud基础 ...

  8. 【webpack2】-- 入门与解析

    每次学新东西总感觉自己是不是变笨了,看了几个博客,试着试着就跑不下去,无奈只有去看官方文档. webpack是基于node的.先安装最新的node. 1.初始化 安装node后,新建一个目录,比如ht ...

  9. UnicodeEncodeError: 'ascii' codec can't encode character u'\u5728' in position 1

    s = "图片picture"print chardet.detect(s) for c in s.decode('utf-8'): print c UnicodeEncodeEr ...

  10. mac 安装scrapy

    https://jingyan.baidu.com/article/14bd256e748346bb6d2612be.html 1.安装Python 安装完了记得配置环境,将python目录和pyth ...