大力反演出奇迹。

然后xjb维护。

毕竟T1

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define md 1000000007
#define maxn 1000005 int T,n,m,f[maxn],g[maxn],finv[maxn],ginv[maxn],mu[maxn];
int vis[maxn],pr[maxn],top=0; int ksm(int a,int b)
{
int ret=1;
while (b)
{
if (b&1) ret=(ll)ret*a%md;
a=(ll)a*a%md;
b>>=1;
}
return ret;
} void init()
{
f[0]=0; f[1]=1; mu[1]=1; g[0]=1; g[1]=1;
F(i,2,maxn-1)
{
f[i]=(f[i-1]+f[i-2])%md; finv[i]=ksm(f[i],md-2);
g[i]=1;
if (!vis[i]) pr[++top]=i,mu[i]=-1;
for (int j=1;j<=top&&(ll)i*pr[j]<maxn;++j)
{
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=mu[i]*mu[pr[j]];
}
}
F(i,2,maxn-1)
for (int j=1;(int)i*j<maxn;++j)
{
int tmp;
switch (mu[j])
{
case 1:tmp=f[i];break;
case 0:tmp=1; break;
case -1:tmp=finv[i];break;
}
g[i*j]=(ll)g[i*j]*tmp%md;
}
F(i,1,maxn-1) g[i]=(ll)g[i]*g[i-1]%md;
F(i,0,maxn-1) ginv[i]=ksm(g[i],md-2);
} int cal(int n,int m)
{
int ans=1;
for (int last=0,i=1;i<=n&&i<=m;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ll)ans*ksm((ll)g[last]*ginv[i-1]%md,(ll)(n/i)*(m/i)%(md-1))%md;
}
return ans;
} int main()
{
init(); scanf("%lld",&T);
while (T--)
{
scanf("%lld%lld",&n,&m);
printf("%lld\n",cal(n,m));
}
return 0;
}

  

BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演的更多相关文章

  1. BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...

  2. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  3. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  4. bzoj 4816: [Sdoi2017]数字表格【莫比乌斯反演+逆元】

    把题意简化,就是要求 \[ \prod_{d=1}^{min(n,m)}f[d]^{\sum_{i=1}^{n}\sum_{j=1}^{m}e[gcd(i,j)==d]} \] 把幂用莫比乌斯反演转化 ...

  5. 【刷题】BZOJ 4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  6. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

  7. BZOJ4816 SDOI2017 数字表格 莫比乌斯反演

    传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...

  8. BZOJ 4816[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 \(Description\) 用\(f_i\)表示\(fibonacci\)数列第\(i\)项,求\(\prod_{i=1}^{n}\prod_{j=1}^{m}f[gcd(i,j)]\) ...

  9. bzoj 4816 [Sdoi2017]数字表格——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\lim ...

随机推荐

  1. 【UML】对象图Object diagram(转)

    http://blog.csdn.net/sds15732622190/article/details/48894751 前言 今天要说的是UML中的对象图.他与类图,合作图都有关系,是类图的实例化. ...

  2. 脚手架创建一个React项目

    一.安装 1.安装node.js 官网地址 https://nodejs.org/en/ 进入后点击下载,官方网站会根据你的系统类型推荐最适合你安装的版本.(如果已经安装了node.js跳过此步)如下 ...

  3. 2d游戏中求出一个向量的两个垂直向量

    function cc.exports.VerticalVector(vec)--求出两个垂直向量 local result = {} result[1] = cc.p(vec.y/vec.x,-1) ...

  4. 传智 Python基础班+就业班+课件 【最新完整无加密视频课程】

    点击了解更多Python课程>>> 传智 Python基础班+就业班+课件 [最新完整无加密视频课程] 直接课程目录 python基础 linux操作系统基础) 1-Linux以及命 ...

  5. 点击tr实现选择checkbox功能,点击checkobx的时候阻止冒泡事件, jquery给checkbox添加checked属性或去掉checked属性不能使checkobx改变状态

    给tr添加点击事件,使用find方法查找tr下的所有层级的元素,children只查找下一层级的元素,所以使用find.find的返回值为jquery对象,在这个项目中不知道为什么使用jquery给c ...

  6. linux下的一些命令分析与shell的一些命令

    对> 与 >>的理解 echo "aaa" > aaa.txt 这个是在aaa.txt中写入aaa   可以用cat  aaa.txt查看 echo &qu ...

  7. python将excel数据写入数据库,或从库中读取出来

    首先介绍一下SQL数据库的一些基本操作: 1创建 2删除 3写入 4更新(修改) 5条件选择 有了以上基本操作,就可以建立并存储一个简单的数据库了. 放出python调用的代码: 此处是调用dos 操 ...

  8. hessian应用示例

    因为公司的项目远程调用采用的是hessian,故抽时间了解了下hessian,自己也写了一个应用实例,以便加深对hessian的理解. Hessian是一个轻量级的remoting onhttp工具, ...

  9. 如何在微信中发送"相册"文件时有选择性地显示视频文件

    相信很多微信用户在使用微信给朋友,同事发送相册中的文件时,微信会显示你手机中的视频文件,这样很不方便. 如果要完全不显示视频文件: 随便在手机中建立一个文件夹,名字叫 ".nomedia&q ...

  10. MySQL数据库详解(一)执行SQL查询语句时,其底层到底经历了什么?

    一条SQL查询语句是如何执行的? 前言 ​ 大家好,我是WZY,今天我们学习下MySQL的基础框架,看一件事千万不要直接陷入细节里,你应该先鸟瞰其全貌,这样能够帮助你从高维度理解问题.同样,对于MyS ...