BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演
大力反演出奇迹。
然后xjb维护。
毕竟T1
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define md 1000000007
#define maxn 1000005 int T,n,m,f[maxn],g[maxn],finv[maxn],ginv[maxn],mu[maxn];
int vis[maxn],pr[maxn],top=0; int ksm(int a,int b)
{
int ret=1;
while (b)
{
if (b&1) ret=(ll)ret*a%md;
a=(ll)a*a%md;
b>>=1;
}
return ret;
} void init()
{
f[0]=0; f[1]=1; mu[1]=1; g[0]=1; g[1]=1;
F(i,2,maxn-1)
{
f[i]=(f[i-1]+f[i-2])%md; finv[i]=ksm(f[i],md-2);
g[i]=1;
if (!vis[i]) pr[++top]=i,mu[i]=-1;
for (int j=1;j<=top&&(ll)i*pr[j]<maxn;++j)
{
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=mu[i]*mu[pr[j]];
}
}
F(i,2,maxn-1)
for (int j=1;(int)i*j<maxn;++j)
{
int tmp;
switch (mu[j])
{
case 1:tmp=f[i];break;
case 0:tmp=1; break;
case -1:tmp=finv[i];break;
}
g[i*j]=(ll)g[i*j]*tmp%md;
}
F(i,1,maxn-1) g[i]=(ll)g[i]*g[i-1]%md;
F(i,0,maxn-1) ginv[i]=ksm(g[i],md-2);
} int cal(int n,int m)
{
int ans=1;
for (int last=0,i=1;i<=n&&i<=m;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ll)ans*ksm((ll)g[last]*ginv[i-1]%md,(ll)(n/i)*(m/i)%(md-1))%md;
}
return ans;
} int main()
{
init(); scanf("%lld",&T);
while (T--)
{
scanf("%lld%lld",&n,&m);
printf("%lld\n",cal(n,m));
}
return 0;
}
BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演的更多相关文章
- BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- bzoj 4816: [Sdoi2017]数字表格【莫比乌斯反演+逆元】
把题意简化,就是要求 \[ \prod_{d=1}^{min(n,m)}f[d]^{\sum_{i=1}^{n}\sum_{j=1}^{m}e[gcd(i,j)==d]} \] 把幂用莫比乌斯反演转化 ...
- 【刷题】BZOJ 4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演
题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- BZOJ 4816[SDOI2017]数字表格(莫比乌斯反演)
题目链接 \(Description\) 用\(f_i\)表示\(fibonacci\)数列第\(i\)项,求\(\prod_{i=1}^{n}\prod_{j=1}^{m}f[gcd(i,j)]\) ...
- bzoj 4816 [Sdoi2017]数字表格——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\lim ...
随机推荐
- ProtoBuff3 unity_TCP网络发包解包&&消息订阅
using Google.Protobuf; //using Google.Protobuf.Examples.AddPerson; using Google.Protobuf.WellKnownTy ...
- apropos linux
Apropos adj. 恰当的,关于,就...而言 adv. 顺便地,恰当地 All my suggestions apropos the script were accepted. 我所有有关该剧 ...
- 面向对象OONo.3单元总结
一,JML语言 1)JML理论基础:JML是一类语言,用来描述一个方法或一个类的功能.以及这个类在实现这个功能时需要的条件.可能改变的全局变量.以及由于条件问题不能实现功能时这个方法或类的行为,具有明 ...
- iframe的document操作
导语: 在我写网页代填插件的时候,有遇到拿不到input元素的时候,这时候我去看元素布局,发现有些网站登录那一块是用iframe标签写的,这时候我需要取到的那就是iframe标签下input元素 1. ...
- Forbidden You don't have permission to access /phpStudyTest/application/index/controller/Index.php on this server.
发生情况:将thinkPHP从官网上下了 http://thinkphp.cn 然后安装了phpstudy和PHPstorm,并将thinkPHP解压到www路径下 在用PHPstorm打开 thi ...
- PAT (Basic Level) Practise (中文)-1039. 到底买不买(20)
PAT (Basic Level) Practise (中文)-1039. 到底买不买(20) http://www.patest.cn/contests/pat-b-practise/1039 小红 ...
- checkbox点击选中,再点击取消,并显示在文本框中
function checkItem(e,itemId) { var item = document.getElementById(itemId); var $items = $(item); if ...
- BZOJ-1833(数位DP)
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll a,b; int k[20]; ll dp[2 ...
- [LUOGU]P1508 Likecloud-吃、吃、吃
题目背景 问世间,青春期为何物? 答曰:"甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!" 题目描述 正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一直处在饥饿的状态中.某日 ...
- 转 Spring源码剖析——核心IOC容器原理
Spring源码剖析——核心IOC容器原理 2016年08月05日 15:06:16 阅读数:8312 标签: spring源码ioc编程bean 更多 个人分类: Java https://blog ...