[PCL]点云渐进形态学滤波
PCL支持点云的形态学滤波,四种操作:侵蚀、膨胀、开(先侵蚀后膨胀)、闭(先膨胀后侵蚀)
关于渐进的策略,在初始cell_size_ 的基础上逐渐变大。满足如下公式:
$$window\_size =cell\_size *(2*base^{k}+1)$$
$$window\_size =cell\_size *(2*base*(k+1)+1)$$
// Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
}
在#include <pcl/filters/morphological_filter.h>中定义了枚举类型
enum MorphologicalOperators
{
MORPH_OPEN,
MORPH_CLOSE,
MORPH_DILATE,
MORPH_ERODE
};
具体实现:
template <typename PointT> void
pcl::applyMorphologicalOperator (const typename pcl::PointCloud<PointT>::ConstPtr &cloud_in,
float resolution, const int morphological_operator,
pcl::PointCloud<PointT> &cloud_out)
{
if (cloud_in->empty ())
return; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_out); pcl::octree::OctreePointCloudSearch<PointT> tree (resolution);
tree.setInputCloud (cloud_in);
tree.addPointsFromInputCloud (); float half_res = resolution / 2.0f; switch (morphological_operator)
{
case MORPH_DILATE:
case MORPH_ERODE:
{
for (size_t p_idx = ; p_idx < cloud_in->points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_in->points[p_idx].x - half_res;
float miny = cloud_in->points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_in->points[p_idx].x + half_res;
float maxy = cloud_in->points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (*cloud_in, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_DILATE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_ERODE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
case MORPH_OPEN:
case MORPH_CLOSE:
{
pcl::PointCloud<PointT> cloud_temp; pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_temp); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices);
if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
}
}
} cloud_temp.swap (cloud_out); for (size_t p_idx = ; p_idx < cloud_temp.points.size (); ++p_idx)
{
Eigen::Vector3f bbox_min, bbox_max;
std::vector<int> pt_indices;
float minx = cloud_temp.points[p_idx].x - half_res;
float miny = cloud_temp.points[p_idx].y - half_res;
float minz = -std::numeric_limits<float>::max ();
float maxx = cloud_temp.points[p_idx].x + half_res;
float maxy = cloud_temp.points[p_idx].y + half_res;
float maxz = std::numeric_limits<float>::max ();
bbox_min = Eigen::Vector3f (minx, miny, minz);
bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
tree.boxSearch (bbox_min, bbox_max, pt_indices); if (pt_indices.size () > )
{
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt); switch (morphological_operator)
{
case MORPH_OPEN:
default:
{
cloud_out.points[p_idx].z = max_pt.z ();
break;
}
case MORPH_CLOSE:
{
cloud_out.points[p_idx].z = min_pt.z ();
break;
}
}
}
}
break;
}
default:
{
PCL_ERROR ("Morphological operator is not supported!\n");
break;
}
} return;
}
而渐进形态学滤波则是逐渐增大窗口,循环进行开操作
template <typename PointT> void
pcl::ProgressiveMorphologicalFilter<PointT>::extract (std::vector<int>& ground)
{
bool segmentation_is_possible = initCompute ();
if (!segmentation_is_possible)
{
deinitCompute ();
return;
} // Compute the series of window sizes and height thresholds
std::vector<float> height_thresholds;
std::vector<float> window_sizes;
int iteration = ;
float window_size = 0.0f;
float height_threshold = 0.0f; while (window_size < max_window_size_)
{
// Determine the initial window size.
if (exponential_)
window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
else
window_size = cell_size_ * (2.0f * (iteration+) * base_ + 1.0f); // Calculate the height threshold to be used in the next iteration.
if (iteration == )
height_threshold = initial_distance_;
else
height_threshold = slope_ * (window_size - window_sizes[iteration-]) * cell_size_ + initial_distance_; // Enforce max distance on height threshold
if (height_threshold > max_distance_)
height_threshold = max_distance_; window_sizes.push_back (window_size);
height_thresholds.push_back (height_threshold); iteration++;
} // Ground indices are initially limited to those points in the input cloud we
// wish to process
ground = *indices_; // Progressively filter ground returns using morphological open
for (size_t i = ; i < window_sizes.size (); ++i)
{
PCL_DEBUG (" Iteration %d (height threshold = %f, window size = %f)...",
i, height_thresholds[i], window_sizes[i]); // Limit filtering to those points currently considered ground returns
typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::copyPointCloud<PointT> (*input_, ground, *cloud); // Create new cloud to hold the filtered results. Apply the morphological
// opening operation at the current window size.
typename pcl::PointCloud<PointT>::Ptr cloud_f (new pcl::PointCloud<PointT>);
pcl::applyMorphologicalOperator<PointT> (cloud, window_sizes[i], MORPH_OPEN, *cloud_f); // Find indices of the points whose difference between the source and
// filtered point clouds is less than the current height threshold.
std::vector<int> pt_indices;
for (size_t p_idx = ; p_idx < ground.size (); ++p_idx)
{
float diff = cloud->points[p_idx].z - cloud_f->points[p_idx].z;
if (diff < height_thresholds[i])
pt_indices.push_back (ground[p_idx]);
} // Ground is now limited to pt_indices
ground.swap (pt_indices); PCL_DEBUG ("ground now has %d points\n", ground.size ());
} deinitCompute ();
}
[PCL]点云渐进形态学滤波的更多相关文章
- PCL—点云分割(基于形态学) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5017428.html 1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直 ...
- PCL—点云滤波(初步处理)
博客转载自:http://www.cnblogs.com/ironstark/p/4991232.html 点云滤波的概念 点云滤波是点云处理的基本步骤,也是进行 high level 三维图像处理之 ...
- PCL—点云滤波(基于点云频率) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5010771.html 1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概 ...
- PCL中点云数据格式之间的转化
(1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别 pcl::PointXYZ::PointXYZ ...
- PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...
- PCL点云配准(2)
(1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点 ...
- PCL—点云分割(邻近信息) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5000147.html 分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最 ...
- PCL点云库(Point Cloud Library)简介
博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=29 什么是PCL PCL(Point Cloud Library)是在吸收了 ...
- PCL点云库:ICP算法
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Alg ...
随机推荐
- windows下编译及使用libevent
Libevent官网:http://libevent.org/ windows 7下编译: 编译环境: windows 7 + VS2010 (1)解压libevent到F:\libevent\lib ...
- jrebel实现tomcat热部署
-noverify -javaagent:D:\jrebel.jar 注:频繁切换工程的时候,热部署可能会失效; 解决办法是:先把项目拖到tomcat下发布,然后在没有配置上面这行代码的情况下,让项目 ...
- 彻底解决m2eclipse之Unable to update index for central
原文链接:https://my.oschina.net/itblog/blog/208581 maven是个好东西,eclipse上的maven插件m2eclipse也非常方便,但是最近这个东西经常无 ...
- Struts2 回顾总结
1.第一个Struts2入门案例 1.找jar包 Struts2-core xwork-core ognl javasist freemarker commons-lang commons-io co ...
- 模板函数(template function)出现编译链接错误(link error)之解析
总的结论: 将template function 或者 template class的完整定义直接放在.h文件中,然后加到要使用这些template function的.cpp文件中. 1. 现 ...
- 解决Win8无法升级.NET Framework 3.5.1 提示错误0x800F0906
搞了好久,发现了这篇文,很清晰,就引用了过来.http://www.xdowns.com/article/239/Article_3065.html 起因是windows8.1装oracle10g提示 ...
- 关于Openlayer3的菜鸟认识
什么是OpenLayers? OpenLayers 是一个专为Web GIS 客户端开发提供的JavaScript 类库包,用于实现标准格式发布的地图数据访问.从OpenLayers2.2版本以后,O ...
- 使用tungsten将mysql的数据同步到hadoop
背景 线上有很多的数据库在运行,后台需要一个分析用户行为的数据仓库.目前比较流行的是mysql和hadoop平台. 现在的问题是,如何将线上的mysql数据实时的同步到hadoop中,以供分析.这篇文 ...
- svn: E155004 is already locked 解决方案
在出错文件夹下(或整个工程项目),鼠标右键TortoiseSVN->Clean up. SVN错误:Attempted to lock an already-locked dir 1.出现这个问 ...
- CocoaPods pod install/pod update更新慢的问题
CocoaPods pod install/pod update 最近使用CocoaPods来添加第三方类库,无论是执行pod install还是pod update都卡在了Analyzing d ...