// 引入实际标定板方格宽度的标定程序
#include <string>
#include <iostream>
#include <cv.h>
#include <highgui.h> using namespace std; int main()
{
CvCapture* capture; //摄像头指针
capture=cvCreateCameraCapture();
if(capture==){
printf("无法捕获摄像头设备!\n\n");
return ;
}else{
printf("捕获摄像头设备成功!!\n\n");
}
IplImage* frame; //图像指针
cvNamedWindow("摄像机帧截取窗口",);
printf("按“C”键截取当前帧并保存为标定图片...\n按“Q”键退出截取帧过程...\n\n");
int number_image=; //文件名后的编号,从1开始,也是截取的图像帧数
char filename[]=""; //保存文件名的字符串数组
while(true)
{
frame=cvQueryFrame(capture);
if(!frame)
break;
cvShowImage("摄像机帧截取窗口",frame); if(cvWaitKey()=='c'){
sprintf (filename,"%d.jpg",number_image);
cvSaveImage(filename,frame);
cout<<"成功获取当前帧,并以文件名"<<filename<<"保存...\n\n";
printf("按“C”键截取当前帧并保存为标定图片...\n按“Q”键退出截取帧过程...\n\n");
number_image++;
}else if(cvWaitKey()=='q'){
printf("截取图像帧过程完成...\n\n");
cout<<"共成功截取"<<--number_image<<"帧图像!!\n\n";
break;
}
}
cvReleaseImage(&frame);
cvReleaseCapture(&capture);
cvDestroyWindow("摄像机帧截取窗口"); IplImage * show; //RePlay图像指针
cvNamedWindow("RePlay",);
int number_image_copy=number_image; //复制图像帧数
CvSize board_size=cvSize(,); //标定板角点数
CvSize2D32f square_size=cvSize2D32f(18.2,18.2); //cvSize2D32f( double width, double height );假设我的每个标定方格长宽都是1.82厘米
float square_length=square_size.width; //方格长度
float square_height=square_size.height; //方格高度
int board_width=board_size.width; //每行角点数
int board_height=board_size.height; //每列角点数
int total_per_image=board_width*board_height; //每张图片角点总数
int count; //存储每帧图像中实际识别的角点数
int found; //识别标定板角点的标志位
int step; //存储步长,step=successes*total_per_image;
int successes=; //存储成功找到标定板上所有角点的图像帧数
int a=; //临时变量,表示在操作第a帧图像 CvPoint2D32f * image_points_buf = new CvPoint2D32f[total_per_image]; //存储角点图像坐标的数组
CvMat * image_points=cvCreateMat(number_image*total_per_image,,CV_32FC1); //存储角点的图像坐标的矩阵
CvMat * object_points=cvCreateMat(number_image*total_per_image,,CV_32FC1); //存储角点的三维坐标的矩阵
CvMat * point_counts=cvCreateMat(number_image,,CV_32SC1); //存储每帧图像的识别的角点数
CvMat * intrinsic_matrix=cvCreateMat(,,CV_32FC1); //内参数矩阵
CvMat * distortion_coeffs=cvCreateMat(,,CV_32FC1); //畸变系数 while(a<=number_image_copy){
sprintf (filename,"%d.jpg",a);
show=cvLoadImage(filename,-);
found=cvFindChessboardCorners(show,board_size,image_points_buf,&count,
CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
if(found==){ //如果没找到标定板角点时
cout<<"第"<<a<<"帧图片无法找到棋盘格所有角点!\n\n";
cvNamedWindow("RePlay",);
cvShowImage("RePlay",show);
cvWaitKey(); }else{ //找到标定板角点时
cout<<"第"<<a<<"帧图像成功获得"<<count<<"个角点...\n";
cvNamedWindow("RePlay",);
IplImage * gray_image= cvCreateImage(cvGetSize(show),,);
cvCvtColor(show,gray_image,CV_BGR2GRAY);
cout<<"获取源图像灰度图过程完成...\n";
cvFindCornerSubPix(gray_image,image_points_buf,count,cvSize(,),cvSize(-,-),
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,,0.1));
cout<<"灰度图亚像素化过程完成...\n";
cvDrawChessboardCorners(show,board_size,image_points_buf,count,found);
cout<<"在源图像上绘制角点过程完成...\n\n";
cvShowImage("RePlay",show);
cvWaitKey();
} if(total_per_image==count){
step=successes*total_per_image; //计算存储相应坐标数据的步长
for(int i=step,j=;j<total_per_image;++i,++j){
CV_MAT_ELEM(*image_points,float,i,)=image_points_buf[j].x;
CV_MAT_ELEM(*image_points,float,i,)=image_points_buf[j].y;
CV_MAT_ELEM(*object_points,float,i,)=(float)((j/board_width)*square_length);
CV_MAT_ELEM(*object_points,float,i,)=(float)((j%board_width)*square_height);
CV_MAT_ELEM(*object_points,float,i,)=0.0f;
}
CV_MAT_ELEM(*point_counts,int,successes,)=total_per_image;
successes++;
}
a++;
} cvReleaseImage(&show);
cvDestroyWindow("RePlay"); cout<<"*********************************************\n";
cout<<number_image<<"帧图片中,标定成功的图片为"<<successes<<"帧...\n";
cout<<number_image<<"帧图片中,标定失败的图片为"<<number_image-successes<<"帧...\n\n";
cout<<"*********************************************\n\n"; cout<<"按任意键开始计算摄像机内参数...\n\n"; CvCapture* capture1;
capture1=cvCreateCameraCapture();
IplImage * show_colie;
show_colie=cvQueryFrame(capture1); CvMat * object_points2=cvCreateMat(successes*total_per_image,,CV_32FC1);
CvMat * image_points2=cvCreateMat(successes*total_per_image,,CV_32FC1);
CvMat * point_counts2=cvCreateMat(successes,,CV_32SC1); for(int i=;i<successes*total_per_image;++i){
CV_MAT_ELEM(*image_points2,float,i,)=CV_MAT_ELEM(*image_points,float,i,);
CV_MAT_ELEM(*image_points2,float,i,)=CV_MAT_ELEM(*image_points,float,i,);
CV_MAT_ELEM(*object_points2,float,i,)=CV_MAT_ELEM(*object_points,float,i,);
CV_MAT_ELEM(*object_points2,float,i,)=CV_MAT_ELEM(*object_points,float,i,);
CV_MAT_ELEM(*object_points2,float,i,)=CV_MAT_ELEM(*object_points,float,i,);
} for(int i=;i<successes;++i){
CV_MAT_ELEM(*point_counts2,int,i,)=CV_MAT_ELEM(*point_counts,int,i,);
} cvReleaseMat(&object_points);
cvReleaseMat(&image_points);
cvReleaseMat(&point_counts); //初始化相机内参矩阵
CV_MAT_ELEM(*intrinsic_matrix,float,,)=1.0f;
CV_MAT_ELEM(*intrinsic_matrix,float,,)=1.0f; //标定相机的内参矩阵和畸变系数向量
cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvGetSize(show_colie),
intrinsic_matrix,distortion_coeffs,NULL,NULL,); cout<<"摄像机内参数矩阵为:\n";
cout<<CV_MAT_ELEM(*intrinsic_matrix,float,,)<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<"\n\n";
cout<<CV_MAT_ELEM(*intrinsic_matrix,float,,)<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<"\n\n";
cout<<CV_MAT_ELEM(*intrinsic_matrix,float,,)<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<" "<<CV_MAT_ELEM(*intrinsic_matrix,float,,)
<<"\n\n"; cout<<"畸变系数矩阵为:\n";
cout<<CV_MAT_ELEM(*distortion_coeffs,float,,)<<" "<<CV_MAT_ELEM(*distortion_coeffs,float,,)
<<" "<<CV_MAT_ELEM(*distortion_coeffs,float,,)
<<" "<<CV_MAT_ELEM(*distortion_coeffs,float,,)
<<" "<<CV_MAT_ELEM(*distortion_coeffs,float,,)
<<"\n\n"; cvSave("Intrinsics.xml",intrinsic_matrix);
cvSave("Distortion.xml",distortion_coeffs); cout<<"摄像机矩阵、畸变系数向量已经分别存储在名为Intrinsics.xml、Distortion.xml文档中\n\n"; CvMat * intrinsic=(CvMat *)cvLoad("Intrinsics.xml");
CvMat * distortion=(CvMat *)cvLoad("Distortion.xml"); IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,);
IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,); cvInitUndistortMap(intrinsic,distortion,mapx,mapy); cvNamedWindow("原始图像",);
cvNamedWindow("非畸变图像",); cout<<"按‘E’键退出显示...\n\n"; while(show_colie){
IplImage * clone=cvCloneImage(show_colie);
cvShowImage("原始图像",show_colie);
cvRemap(clone,show_colie,mapx,mapy);
cvReleaseImage(&clone);
cvShowImage("非畸变图像",show_colie); if(cvWaitKey()=='e'){
break;
} show_colie=cvQueryFrame(capture1);
} return ; }

opencv单目摄像机标定(二)的更多相关文章

  1. opencv单目摄像机标定(一)

    #include <string> #include <iostream> #include <cv.h> #include <highgui.h> u ...

  2. opencv单目摄像机标定

    #include <cv.h> #include <highgui.h> #include <iostream> #include <stdio.h> ...

  3. 机器视觉学习笔记(5)——基于OpenCV的单目摄像机标定

    本文CameraCalibrator类源代码来自于OpenCV2 计算机视觉编程手册(Robert Laganiere 著 张静 译) 强烈建议阅读机器视觉学习笔记(4)--单目摄像机标定参数说明之后 ...

  4. 基于OpenCV单目相机的快速标定--源码、工程、实现过程

    相机的标定是所有人走进视觉世界需要做的第一件事,辣么多的视觉标定原理解释你可以随便在网上找到,这里只讲到底如何去实现,也算是给刚入门的朋友做个简单的分享. 1.单目相机标定的工程源码 首先请到同性交友 ...

  5. matlab单目相机标定——标定步骤以及参数含义

    参考博客园的一篇文章: https://www.cnblogs.com/flyinggod/p/8470407.html#commentform

  6. 基于EmguCV的摄像机标定及矫正

    标签: EmguCV摄像头标定C# 2015-05-03 14:55 501人阅读 评论(6) 收藏 举报  分类: C# 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+] ...

  7. [OpenCV-Python] OpenCV 中摄像机标定和 3D 重构 部分 VII

    部分 VII摄像机标定和 3D 重构 OpenCV-Python 中文教程(搬运)目录 42 摄像机标定 目标 • 学习摄像机畸变以及摄像机的内部参数和外部参数 • 学习找到这些参数,对畸变图像进行修 ...

  8. 【OpenCV】摄像机标定+畸变校正

      摄像机标定 本文目的在于记录如何使用MATLAB做摄像机标定,并通过OpenCV进行校正后的显示. 首先关于校正的基本知识通过OpenCV官网的介绍即可简单了解: http://docs.open ...

  9. 用OpenCV进行摄像机标定

    用OpenCV进行摄像机标定 照相机已经存在很长时间了.然而,随着廉价针孔相机在20世纪末的引入,日常生活中变得司空见惯.不幸的是,这种廉价伴随着它的代价:显著的扭曲.幸运的是,这些常数,通过校准和一 ...

随机推荐

  1. Android开发:程序目录结构详解

    HelloWorld程序的目录结构概述 我们可以在文件夹中看到,HelloWorld程序的目录主要包括:src文件夹.gen文件夹.Android文件夹.assets.res文件夹. AndroidM ...

  2. php使用ajax导出CSV或者EXCEl(thinkphp)方法

    首先我强烈推荐看到这篇文章的你将导出文件设置为csv格式的文件 实际测试导出csv文件的速度是excel文件的10几倍左右 首先我先介绍csv文件的导出的方法: 如果你单纯是在数据导出界面上通过用户点 ...

  3. HDU1005

    Number Sequence  HDU-1005 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  4. 块状元素(div)与内联元素(span)

    <pre class="html" name="code"><html xmlns="http://www.w3.org/1999/ ...

  5. java笔试面试二

    http://www.cnblogs.com/lanxuezaipiao/p/3371224.html

  6. 从不同方面寻找bug

    从小学生的角度,为了熟能生巧,更好掌握知识,那就需要不断的练习,然而app没有重新开始的功能,要退出再重新进入,很麻烦.还有,如果小学生只想做一类的计算,例如,只想做减法或乘法,那么它就不能满足. 我 ...

  7. jQuery 求页面加载等待特效

    这个案例是最近写一些前端展示的案例出现的一个问题,特此记录,使用ajax的一些方法和使用的技巧: $.ajax({ url:"", type:"post", d ...

  8. springMVC学习笔记(五)

    一.使用Ajax调用 1.1 Controller返回的类型为text类型的方式. @RequestMapping("/getPerson") public void getPer ...

  9. 微信支付之JSAPI开发-第二篇:业务流程详解与方案设计

    微信支付流程 流程: 上图的网址为:https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=7_4 如上图所示,微信网页支付的具体流程大致分为 ...

  10. 在线api地址

    J2SE1.7英文api地址: http://download.oracle.com/javase/7/docs/api/J2SE1.6英文api地址:  http://download.oracle ...