[AHOI 2009] 维护序列(线段树模板题)
1798: [Ahoi2009]Seq 维护序列seq
Time Limit: 30 Sec Memory Limit: 64 MB
Description
Input
Output
Sample Input
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
35
8
HINT
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。
测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
- 裸的线段树模板题,会乘法tag和加法tag即可。
- 复杂度O(mlogn),虽然常数较大,不过也能通过本题。
#include <cstdio>
#include <algorithm>
using namespace std; struct tree{
int l,r;
long long lz,tg,sum;
}; int n,p,m,opt,x,y,k,a[];
tree t[]; void build(int x,int l,int r) {
t[x].l=l; t[x].r=r; t[x].tg=;
if (t[x].l==t[x].r) {
t[x].sum=a[l]%p;
return;
}
int mid=(t[x].l+t[x].r)>>;
build(x*,l,mid);
build(x*+,mid+,r);
t[x].sum=(t[x*].sum+t[x*+].sum)%p;
} void update(int x) {
t[x].sum=(t[x].sum*t[x].tg+t[x].lz*(t[x].r-t[x].l+))%p;
if (t[x].l==t[x].r) {
t[x].tg=;
t[x].lz=;
return;
}
t[x*].tg=(t[x*].tg*t[x].tg)%p;
t[x*+].tg=(t[x*+].tg*t[x].tg)%p;
t[x*].lz=(t[x*].lz*t[x].tg+t[x].lz)%p;
t[x*+].lz=(t[x*+].lz*t[x].tg+t[x].lz)%p;
t[x].tg=;
t[x].lz=;
} void c_tg(int x,int l,int r,int y) {
if ((t[x].lz) || t[x].tg!=) update(x);
if (t[x].l==l && t[x].r==r) {
t[x].tg=(t[x].tg*y)%p;
return;
}
int mid=(t[x].l+t[x].r)>>;
if (l>mid) c_tg(x*+,l,r,y); else
if (r<=mid) c_tg(x*,l,r,y); else {
c_tg(x*,l,mid,y);
c_tg(x*+,mid+,r,y);
}
t[x].sum=(t[x*].sum*t[x*].tg+t[x*].lz*(t[x*].r-t[x*].l+)+t[x*+].sum*t[x*+].tg+t[x*+].lz*(t[x*+].r-t[x*+].l+))%p;
} void c_lz(int x,int l,int r,int y) {
if ((t[x].lz) || t[x].tg!=) update(x);
if (t[x].l==l && t[x].r==r) {
t[x].lz=(t[x].lz+y)%p;
return;
}
int mid=(t[x].l+t[x].r)>>;
if (l>mid) c_lz(x*+,l,r,y); else
if (r<=mid) c_lz(x*,l,r,y); else {
c_lz(x*,l,mid,y);
c_lz(x*+,mid+,r,y);
}
t[x].sum=(t[x*].sum*t[x*].tg+t[x*].lz*(t[x*].r-t[x*].l+)+t[x*+].sum*t[x*+].tg+t[x*+].lz*(t[x*+].r-t[x*+].l+))%p;
} long long find(int x,int l,int r) {
if ((t[x].lz) || t[x].tg!=) update(x);
if (t[x].l==l && t[x].r==r) return t[x].sum;
int mid=(t[x].l+t[x].r)>>;
if (l>mid) return(find(x*+,l,r)); else
if (r<=mid) return(find(x*,l,r)); else
return(find(x*,l,mid)+find(x*+,mid+,r))%p;
} int main() {
scanf("%d %d",&n,&p);
for (int i=; i<=n; i++) scanf("%d",&a[i]);
build(,,n);
scanf("%d",&m);
for (int i=; i<=m; i++) {
scanf("%d",&opt);
if (opt==) {
scanf("%d %d %d",&x,&y,&k);
c_tg(,x,y,k%p);
}
if (opt==) {
scanf("%d %d %d",&x,&y,&k);
c_lz(,x,y,k%p);
}
if (opt==) {
scanf("%d %d",&x,&y);
printf("%d\n",find(,x,y));
}
}
return ;
}
[AHOI 2009] 维护序列(线段树模板题)的更多相关文章
- AHOI 2009 维护序列
洛谷 P2023 [AHOI2009]维护序列 洛谷传送门 题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式 ...
- hdu1823(二维线段树模板题)
hdu1823 题意 单点更新,求二维区间最值. 分析 二维线段树模板题. 二维线段树实际上就是树套树,即每个结点都要再建一颗线段树,维护对应的信息. 一般一维线段树是切割某一可变区间直到满足所要查询 ...
- [POJ2104] 区间第k大数 [区间第k大数,可持久化线段树模板题]
可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include &l ...
- HDU 1698 Just a Hook (线段树模板题-区间求和)
Just a Hook In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of t ...
- BZOJ1798[Ahoi2009]维护序列——线段树
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...
- UESTC - 1057 秋实大哥与花 线段树模板题
http://acm.uestc.edu.cn/#/problem/show/1057 题意:给你n个数,q次操作,每次在l,r上加上x并输出此区间的sum 题解:线段树模板, #define _CR ...
- POJ - 3264 线段树模板题 询问区间最大最小值
这是线段树的一个模板题,给出一串数字,然后询问区间的最大最小值. 这个其实很好办,只需把线段树的节点给出两个权值,一个是区间的最小值,一个是区间的最大值,初始化为负无穷和正无穷,然后通过不断地输入节点 ...
- [P2023][AHOI2009]维护序列(线段树)
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
- [AHOI2009]维护序列 (线段树)
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
随机推荐
- [转]Objective-c中@interface、@implementation、@protocal
原处:http://blog.csdn.net/l271640625/article/details/8393531 以下Objective-c简称OC 从事java开发的程序员们都知道,在java中 ...
- MySQL Workbench的使用教程 (初级入门版)
MySQL Workbench 是 MySQL AB 最近释放的可视数据库设计工具.这个工具是设计 MySQL 数据库的专用工具. MySQL Workbench 拥有很多的功能和特性:这篇由Djon ...
- 基于WWF搭建的通用审批流程
月明星稀,却不见明月:蛾儿雪柳暗香飘过,纵使回首千百回,却不知,心已灭:壮志未酬,却落得个多情应该笑我:扬帆起航,却不知,帆已破.这是我刚离职时的心情,曾几何时,真的想呆在一家公司,做一名优秀的技术管 ...
- Java泛型学习笔记 - (三)泛型方法
泛型方法其实和泛型类差不多, 就是把泛型定义在方法上, 格式大概就是: public <类型参数> 返回类型 方法名(泛型类型 变量名) {...}泛型方法又分为动态方法和静态方法,:1. ...
- 6、Android之LayoutInflater.inflate()
LayoutInflater.inflate()的作用就是将一个xml定义的布局文件实例化为view控件对象: 与findViewById区别: LayoutInflater.inflate是加载一个 ...
- Hibernate映射一对一关联关系
映射一对一关联 Hibernate提供了两种映射一对一关联关系的方式,分别是按照外键映射和按照主键映射. 下面是员工表和档案信息表(员工和档案表之间的关系是一对一的关系) 档案表(dept) pub ...
- JAVA 语法基础综合练习——学生成绩管理系统
代码如下:package com.lovo.manager; import java.util.Scanner; /** * 学生管理 * * @author Administrator * */ p ...
- 我们正在等待一次技术革命的到来; We are waiting for the arrival of a technological revolution
In the future, there must be a significant technological revolution just like Industrial Revolution. ...
- JDK运行.Jar文件的控制台命令是什么
cd进入jar文件所在目录,执行如下语句: java -jar jar文件名如:java -jar hello.jar
- IOS 宏定义一个单例
有时候是不是因为频繁地创建一个单例对象而头疼,一种方式要写好多遍?当然你可以用OC语言进行封装.但下面将介绍一种由C语言进行的封装.只要实现下面的方法,以后建单例对象只要二句话. 1.新建一个.h文件 ...