Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation)、立体视觉(stereo vision)、抠图(Image matting)等。

此类方法把图像分割问题与图的最小割(min cut)问题相关联。首先用一个无向图G=<V,E>表示要分割的图像,V和E分别是顶点(vertex)和边(edge)的集合。此处的Graph和普通的Graph稍有不同。普通的图由顶点和边构成,如果边的有方向的,这样的图被则称为有向图,否则为无向图,且边是有权值的,不同的边可以有不同的权值,分别代表不同的物理意义。而Graph Cuts图是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S”和”T”表示,统称为终端顶点。其它所有的顶点都必须和这2个顶点相连形成边集合中的一部分。所以Graph Cuts中有两种顶点,也有两种边。

第一种顶点和边是:第一种普通顶点对应于图像中的每个像素。每两个邻域顶点(对应于图像中每两个邻域像素)的连接就是一条边。这种边也叫n-links。

第二种顶点和边是:除图像像素外,还有另外两个终端顶点,叫S(source:源点,取源头之意)和T(sink:汇点,取汇聚之意)。每个普通顶点和这2个终端顶点之间都有连接,组成第二种边。这种边也叫t-links。

上图就是一个图像对应的s-t图,每个像素对应图中的一个相应顶点,另外还有s和t两个顶点。上图有两种边,实线的边表示每两个邻域普通顶点连接的边n-links,虚线的边表示每个普通顶点与s和t连接的边t-links。在前后景分割中,s一般表示前景目标,t一般表示背景。

图中每条边都有一个非负的权值we,也可以理解为cost(代价或者费用)。一个cut(割)就是图中边集合E的一个子集C,那这个割的cost(表示为|C|)就是边子集C的所有边的权值的总和。

Graph Cuts中的Cuts是指这样一个边的集合,很显然这些边集合包括了上面2种边,该集合中所有边的断开会导致残留”S”和”T”图的分开,所以就称为“割”。如果一个割,它的边的所有权值之和最小,那么这个就称为最小割,也就是图割的结果。而福特-富克森定理表明,网路的最大流max flow与最小割min cut相等。所以由Boykov和Kolmogorov发明的max-flow/min-cut算法就可以用来获得s-t图的最小割。这个最小割把图的顶点划分为两个不相交的子集S和T,其中s ∈S,t∈ T和S∪T=V 。这两个子集就对应于图像的前景像素集和背景像素集,那就相当于完成了图像分割。

也就是说图中边的权值就决定了最后的分割结果,那么这些边的权值怎么确定呢?

图像分割可以看成pixel labeling(像素标记)问题,目标(s-node)的label设为1,背景(t-node)的label设为0,这个过程可以通过最小化图割来最小化能量函数得到。那很明显,发生在目标和背景的边界处的cut就是我们想要的(相当于把图像中背景和目标连接的地方割开,那就相当于把其分割了)。同时,这时候能量也应该是最小的。假设整幅图像的标签label(每个像素的label)为L= {l1,l2,,,, lp },其中li为0(背景)或者1(目标)。那假设图像的分割为L时,图像的能量可以表示为:

E(L)=aR(L)+B(L)

其中,R(L)为区域项(regional term),B(L)为边界项(boundary term),而a就是区域项和边界项之间的重要因子,决定它们对能量的影响大小。如果a为0,那么就只考虑边界因素,不考虑区域因素。E(L)表示的是权值,即损失函数,也叫能量函数,图割的目标就是优化能量函数使其值达到最小。

区域项:

,其中Rp(lp)表示为像素p分配标签lp的惩罚,Rp(lp)能量项的权值可以通过比较像素p的灰度和给定的目标和前景的灰度直方图来获得,换句话说就是像素p属于标签lp的概率,我希望像素p分配为其概率最大的标签lp,这时候我们希望能量最小,所以一般取概率的负对数值,故t-link的权值如下:

Rp(1) = -ln Pr(Ip|’obj’); Rp(0) = -ln Pr(Ip|’bkg’)

由上面两个公式可以看到,当像素p的灰度值属于目标的概率Pr(Ip|’obj’)大于背景Pr(Ip|’bkg’),那么Rp(1)就小于Rp(0),也就是说当像素p更有可能属于目标时,将p归类为目标就会使能量R(L)小。那么,如果全部的像素都被正确划分为目标或者背景,那么这时候能量就是最小的。

边界项:

其中,p和q为邻域像素,边界平滑项主要体现分割L的边界属性,B<p,q>可以解析为像素p和q之间不连续的惩罚,一般来说如果p和q越相似(例如它们的灰度),那么B<p,q>越大,如果他们非常不同,那么B<p,q>就接近于0。换句话说,如果两邻域像素差别很小,那么它属于同一个目标或者同一背景的可能性就很大,如果他们的差别很大,那说明这两个像素很有可能处于目标和背景的边缘部分,则被分割开的可能性比较大,所以当两邻域像素差别越大,B<p,q>越小,即能量越小。

好了,现在我们来总结一下:我们目标是将一幅图像分为目标和背景两个不相交的部分,我们运用图分割技术来实现。首先,图由顶点和边来组成,边有权值。那我们需要构建一个图,这个图有两类顶点,两类边和两类权值。普通顶点由图像每个像素组成,然后每两个邻域像素之间存在一条边,它的权值由上面说的“边界平滑能量项”来决定。还有两个终端顶点s(目标)和t(背景),每个普通顶点和s都存在连接,也就是边,边的权值由“区域能量项”Rp(1)来决定,每个普通顶点和t连接的边的权值由“区域能量项”Rp(0)来决定。这样所有边的权值就可以确定了,也就是图就确定了。这时候,就可以通过min cut算法来找到最小的割,这个min cut就是权值和最小的边的集合,这些边的断开恰好可以使目标和背景被分割开,也就是min cut对应于能量的最小化。而min cut和图的max flow是等效的,故可以通过max flow算法来找到s-t图的min cut。目前的算法主要有:

1) Goldberg-Tarjan

2) Ford-Fulkerson

3) 上诉两种方法的改进算法

权值:

Graph cut的3x3图像分割示意图:我们取两个种子点(就是人为的指定分别属于目标和背景的两个像素点),然后我们建立一个图,图中边的粗细表示对应权值的大小,然后找到权值和最小的边的组合,也就是(c)中的cut,即完成了图像分割的功能。

Graph cuts图论分割的更多相关文章

  1. Graph Cuts学习笔记2014.5.16----1

    进行了一段时间的论文学习后,现在下载了一些代码,准备从OpenCV跟matlab两个方面着手搭建自己的图像分割平台,计划耗时一个月左右的时间! 昨天去西工大,听了一场Graph Asia的报告,里面有 ...

  2. 图像分割——graph cuts

    Graph cuts是一种基于图论的方法,它是一种能量优化算法,在计算机视觉领域应用于前景背景分割,立体视觉,抠图等. 这类方法首先使用无向图G=<V,E>表示要分割的图像,V和E分别是顶 ...

  3. Graph Cuts初步理解

    一些知识点的初步理解_8(Graph Cuts,ing...) Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation).立 ...

  4. CUDA Cuts: Fast Graph Cuts on the GPU

    原文出处: http://lincccc.blogspot.tw/2011/03/cuda-cuts-fast-graph-cuts-on-gpu_03.html 现在需要代理才能访问,所以就转载了. ...

  5. [论文笔记] CUDA Cuts: Fast Graph Cuts on the GPU

    Paper:V. Vineet, P. J. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In Proc. CVPR Workshop, 200 ...

  6. vs2015+opencv3.3.1+ maxflow-v3.01 c++实现Yuri Boykov 的Interactive Graph Cuts

    出的结果不理想. 感觉是tlink的权重的计算有问题,以及参数的设置.三个可设置参数是后面的 i j k  .如果你找到了一组好参数请告诉我. 下载地址 http://download.csdn.ne ...

  7. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  8. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  9. HDU 4467 Graph(图论+暴力)(2012 Asia Chengdu Regional Contest)

    Description P. T. Tigris is a student currently studying graph theory. One day, when he was studying ...

随机推荐

  1. Thrift的TCompactProtocol紧凑型二进制协议分析

    Thrift的紧凑型传输协议分析: 用一张图说明一下Thrift的TCompactProtocol中各个数据类型是怎么表示的. 报文格式编码: bool类型: 一个字节. 如果bool型的字段是结构体 ...

  2. C#高级编程笔记 2016年10月8日运算符和类型强制转换

    1.checked和unchecked 运算符 C#提供了checked 和uncheckde 运算符.如果把一个代码块标记为checked, CLR就会执行溢出检查,如果发生溢出,就抛出overfl ...

  3. 无需activity获得屏幕尺寸

    原文地址:http://blog.sina.com.cn/s/blog_4c277ad30100yfqo.html 客户需求需要增加对手机尺寸的读取 于是找了两个方法 第一种:通过activity引用 ...

  4. Zookeeper异常ConnectionLossException解决

    项目中要求做一个将配置文件读取到zookeeper节点上的工具: 开发代码如下: 但是当连接到远端的Zookeeper服务之后,出现了下面异常: Exception in thread "m ...

  5. Python正则表达式详解

    我用双手成就你的梦想 python正则表达式 ^ 匹配开始 $ 匹配行尾 . 匹配出换行符以外的任何单个字符,使用-m选项允许其匹配换行符也是如此 [...] 匹配括号内任何当个字符(也有或的意思) ...

  6. Java JVM类加载机制

    虚拟机的类加载机制是:JVM把描述类的数据从.class文件加载到内存,并对数据进行校验.解析.初始化,最终形成可以被JVM直接使用的Java类型. 加载.连接(验证.准备.解析).初始化.使用.卸载 ...

  7. css3 transition

    <html>   <head lang="en">   <meta charset="UTF-8">   <title ...

  8. IP地址的分类

    IPv4 地址的分类:   一,组成   1. 使用32位地址 2. 以点分十进制表示,如172.16.0.0,每一个数字对应于8个二进制的比特串,称为一个位组(octets).如某一台主机的IP地址 ...

  9. [Repost]Events and Signals in PyQt4

    Reference:http://zetcode.com/gui/pyqt4/eventsandsignals/ Events and Signals in PyQt4 In this part of ...

  10. 【chrome插件】web版微信接入图灵机器人API实现自动回复

    小贱鸡自动回复API已经不可以用了,现在改良接入图灵机器人API 360chrome浏览器团队翻译了部分谷歌插件开发文档 地址:http://open.chrome.360.cn/extension_ ...