Problem

给定一个长度为n的数字串,从中选取k个不重叠的子串(可以少选),将每个串求和si

求max|s1 - s2| + |s2 - s3| + ... + |sk - 1 - sk|(n <= 30000, k <= min(n, 200))

Solution

绝对值后的和,只和峰值和谷值的那些值有关(所以我们可以贪心峰值和谷值尽量多)

用f[i][j][k]表示前i个,分成j段,这个值在哪里(用k=0表示在谷值,k=1表示在谷值到峰值之间,k=2表示在峰值,k=3表示在峰值到谷值之间)

f[i][j][0] = max(f[i - 1][j][0], f[i - 1][j - 1][3]) - flag * x;

f[i][j][1] = max(f[i - 1][j][1], f[i][j][0]);

f[i][j][2] = max(f[i - 1][j][2], f[i - 1][j - 1][1]) + flag * x;

f[i][j][3] = max(f[i - 1][j][3], f[i][j][2]);

flag是什么呢?如果是第一个或者最后一个计算时只算一次,中间的都算两次

然后实际中,全部是峰值和谷值是不一定现实的,所以中间部分还要加上转移:

f[i][j][1] = max(f[i][j][1], f[i - 1][j - 1][1]);

f[i][j][3] = max(f[i][j][3], f[i - 1][j - 1][3]);

Notice

注意第一个或最后一个和其他地方是不一样的。

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 30005, K = 205;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int f[N][K][4];
int sqz()
{
int n = read(), k = read();
rep(i, 1, k)
rep(j, 0, 3) f[0][i][j] = -INF;
rep(i, 1, n)
{
int x = read();
rep(j, 1, k)
{
int flag = 2 - (j == 1 || j == k);
f[i][j][0] = max(f[i - 1][j][0], f[i - 1][j - 1][3]) - flag * x;
f[i][j][1] = max(f[i - 1][j][1], f[i][j][0]);
f[i][j][2] = max(f[i - 1][j][2], f[i - 1][j - 1][1]) + flag * x;
f[i][j][3] = max(f[i - 1][j][3], f[i][j][2]);
if (flag - 1)
{
f[i][j][1] = max(f[i][j][1], f[i - 1][j - 1][1]);
f[i][j][3] = max(f[i][j][3], f[i - 1][j - 1][3]);
}
}
}
printf("%d\n", max(f[n][k][1], f[n][k][3]));
}

[Codeforces513E2]Subarray Cuts的更多相关文章

  1. [CodeForces-513E2]Subarray Cuts

    题目大意: 给你一个数列,从中选出k个互不重叠的非空子串,定义s[i]为第i个子串的和,求|s[1]-s[2]|+|s[2]-s[3]|+...+|s[k-1]-s[k]|的最大值. 思路: 考虑将绝 ...

  2. Codeforces 513E2 Subarray Cuts dp (看题解)

    我们肯定要一大一小间隔开来所以 把式子拆出来就是类似这样的形式 s1 - 2 * s2 + 2 * s3 + ...... + sn 然后把状态开成四个, 分别表示在顶部, 在底部, 在顶部到底部的中 ...

  3. Rockethon 2015

    A Game题意:A,B各自拥有两堆石子,数目分别为n1, n2,每次至少取1个,最多分别取k1,k2个, A先取,最后谁会赢. 分析:显然每次取一个是最优的,n1 > n2时,先手赢. 代码: ...

  4. [LeetCode] Maximum Size Subarray Sum Equals k 最大子数组之和为k

    Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...

  5. [LeetCode] Minimum Size Subarray Sum 最短子数组之和

    Given an array of n positive integers and a positive integer s, find the minimal length of a subarra ...

  6. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. [LeetCode] Maximum Subarray 最大子数组

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. LeetCode 209 Minimum Size Subarray Sum

    Problem: Given an array of n positive integers and a positive integer s, find the minimal length of ...

  9. Leetcode Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

随机推荐

  1. Android JNI 数组操作

    JNI 中有两种数组操作,基础数据类型数组和对象数组,JNI 对待基础数据类型数组和对象数组是不一样的. 基本数据类型数组 对于基本数据类型数组,JNI 都有和 Java 相对应的结构,在使用起来和基 ...

  2. Spark SQL笔记

    HDFS HDFS架构 1.Master(NameNode/NN) 对应 N个Slaves(DataNode/NN)2.一个文件会被拆分成多个块(Block)默认:128M例: 130M ==> ...

  3. MYSQL常用函数(格式化函数)

    DATE_FORMAT(date,fmt)  依照字符串fmt格式化日期date值 FORMAT(x,y)   把x格式化为以逗号隔开的数字序列,y是结果的小数位数 INET_ATON(ip)   返 ...

  4. mysql5.6以上版本: timestamp current_timestamp报1064/1067错误

    mysql5.6以上版本: timestamp current_timestamp报1064/1067错误 在创建时间字段的时候 DEFAULT CURRENT_TIMESTAMP表示当插入数据的时候 ...

  5. English trip V1 - B 23. Nosy People 爱管闲事的人 Teacher:Parice Key: Be + Ving

    In this lesson you will learn to talk about what happened.  谈论发生什么? 课上内容(Lesson) Nosy  好管闲事Noise  噪声 ...

  6. RMQ 解决区间查询问题

    线段树写法不管,比较灵活.这里主要讨论DP实现. 其实单纯说RMQ解决的是区间最值查询是不准确的,只要满足一个区间的信息可以从它的覆盖区间获得(即[L,R]<=[L,r],[l,R] (l< ...

  7. php根据时间显示刚刚,几分钟前,几小时前的实现代码

    发布时间距现在的时间 function tranTime($time) { $rtime = date("m-d H:i", $time); $htime = date(" ...

  8. 性能测试工具 Web Service 性能测试工具比较

    [转自]https://testerhome.com/topics/3003 背景 希望选择一款Web Service性能测试工具,能真实模拟大量用户访问网站时的请求,从而获取服务器当前的请求处理能力 ...

  9. Robbers' watch CodeForces - 685A (暴力)

    大意: 一天n小时, m分钟, 表以7进制显示, 求表显示数字不同的方案数 注意到小时和分钟部分总长不超过7, 可以直接暴力枚举. 关键要特判0, 0的位数要当做1来处理 #include <i ...

  10. bzoj3676: [Apio2014]回文串 pam

    题意:字符串s.我们定义s的一个子串t的"出 现值"为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 题解:pam板子题 //cnt数组表示该节点代表的 ...