介绍

fhqtreap为利用分裂和合并来满足平衡树的性质,不需要旋转操作的一种平衡树。

并且利用函数式编程可以极大的简化代码量。

(题目是抄唐神的来着)

核心操作

(均为按位置分裂合并)

struct fhq {
int lc, rc, siz, rnd, val;
//lc为左子树,rc为右子树,siz为子树大小(位置分裂即按siz分裂),rnd为随机值,val为该节点储存的值
}t[N];
#define lc (t[rt].lc)
#define rc (t[rt].rc)
//下方用到的宏定义

split(rt,l,r,k) 把一个根为rt的子树split成一个根为l和一个根为r的子树(以第k大为界限)

void split(int rt, int &l, int &r, int k) {
if(!k) l = 0, r = rt;
else if(t[rt].siz == k) l = rt, r = 0;
else if(k <= t[lc].siz) r = rt, split(lc, l, lc, k), up(rt);
else l = rt, split(rc, rc, r, k - t[lc].siz - 1), up(rt);
}

merge(rt,l,r) 把根为l和根为r的子树merge成一个根为rt的子树

merge默认子树l的权值比子树r的权值小

merge满足小根堆性质(对rnd)

void merge(int &rt, int l, int r) {
if(!l || !r) rt = l + r;
else if(t[l].rnd < t[r].rnd) rt = l, merge(rc, rc, r), up(rt);
else rt = r, merge(lc, l, lc), up(rt);
}

fhqtreap也有一种按权值分裂的做法,但用处不大,如果要用位置分裂实现权值分裂,可以将序列构造成一个递增的序列,写一个rank求一下插入的数的在序列中的位置,插入到那里就行了(这样就能搞权值分裂能搞的东西了)、

区间操作打懒标记的话,在split和merge的时候下传即可。

常用操作

注意,当需要求max或者min的时候,一定要把root的max/min和val都设成inf/-inf

里面的sum即为上方提到的val。

建新节点

int build(int val) {
t[++tot].rnd = rand() << 15 | rand();
t[tot].siz = 1;
t[tot].sum = val;
return tot;
}

查排名(上方提到的rank,这个是\(logn\)的)

int rank(int rt, int val) {
if(!rt) return 0;
if(t[rt].sum == val) return t[lc].siz + 1;
if(t[rt].sum > val) return rank(lc, val);
return rank(rc, val) + t[lc].siz + 1;
}

插入

inline void insert(int val) {
int rk = rank(root, val), x, y;
split(root, x, y, rk);
int z = build(val);
merge(x, x, z); merge(root, x, y);
}

删除

inline void del(int val) {
int rk = rank(root, val) + 1, x, y, z;
split(root, x, y, rk);
split(x, x, z, rk - 1);
merge(root, x, y);
}

其他操作均类似。

要注意的一个问题:merge和split均针对的是根为rt的子树,所以对应的k也是他们子树中的第k大。可以看看下面的代码。

inline int find(int rk) {//找排名为rk的数
int x, y, z, ans;
split(root, x, y, rk - 1);
split(y, y, z, 1);
ans = t[y].sum;
merge(y, y, z); merge(root, x, y);
return ans;
/*
split(root, x, y, rk); split(x, z, x, rk - 1);
ans = t[x].sum;
merge(x, z, x), merge(root, x, y);
return ans;
*/
}

即在一整个根为root的树中找第rk大,可以有两种实现:1.分裂成前rk大和剩下的,并将前rk大分裂成rk-1大和第rk大。2.分裂成前rk-1大和剩下的,将剩下的那部分,分裂成第一大(不要弄成rk+1!)和后面的

模板题

LuoguP3369 【模板】普通平衡树

就是平衡树的常见操作,可以直接写权值分裂,也可以写位置分裂(构造成递增数列)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <queue>
#include <ctime>
#include <cmath>
#include <stack>
#include <deque>
#include <map>
#include <set> #define ll long long
const int inf = 2e9 + 10;
typedef unsigned long long ull; namespace io { #define in(a) a = read()
#define out(a) write(a)
#define outn(a) out(a), putchar('\n') #define I_int int
inline I_int read() {
I_int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
char F[200];
inline void write(I_int x) {
if (x == 0) return (void) (putchar('0'));
I_int tmp = x > 0 ? x : -x;
if (x < 0) putchar('-');
int cnt = 0;
while (tmp > 0) {
F[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while (cnt > 0) putchar(F[--cnt]);
}
#undef I_int }
using namespace io; using namespace std; #define N 500010 #define lc (t[rt].l)
#define rc (t[rt].r)
struct fhq {
int l, r, sum, siz, rnd;
} t[N];
int tot = 0, root = 0;
void up(int rt) {
if(!rt) return;
t[rt].siz = 1 + t[lc].siz + t[rc].siz;
}
void split(int rt, int &l, int &r, int k) {
//把根为rt的子树,以第k个为界限split成两个子树
//第k个可以是位置,也可以是权值
//这里的k是位置
if(!k) l = 0, r = rt;
else if(k == t[rt].siz) l = rt, r = 0;
else if(k <= t[lc].siz) r = rt, split(lc, l, lc, k), up(rt);
else l = rt, split(rc, rc, r, k - t[lc].siz - 1), up(rt);
}
void merge(int &rt, int l, int r) {
//把l子树和r子树merge为一棵根为rt的子树
if(!l || !r) rt = l + r;
else if(t[l].rnd < t[r].rnd) rt = l, merge(t[rt].r, t[rt].r, r), up(rt);
else rt = r, merge(t[rt].l, l, t[rt].l), up(rt);
}
int build(int val) {
t[++tot].rnd = rand() << 15 | rand();
t[tot].siz = 1;
t[tot].sum = val;
return tot;
}
int rank(int rt, int val) {
if(!rt) return 0;
if(t[rt].sum >= val) return rank(lc, val);
return rank(rc, val) + t[lc].siz + 1;
}
inline void insert(int val) {
int rk = rank(root, val), x, y;
split(root, x, y, rk);
int z = build(val);
merge(x, x, z); merge(root, x, y);
}
inline void del(int val) {
int rk = rank(root, val) + 1, x, y, z;
split(root, x, y, rk);
split(x, x, z, rk - 1);
merge(root, x, y);
}
inline int find(int rk) {
int x, y, z, ans;
split(root, x, y, rk - 1);
split(y, y, z, 1);
ans = t[y].sum;
merge(y, y, z); merge(root, x, y);
return ans;
/*
split(root, x, y, rk); split(x, z, x, rk - 1);
ans = t[x].sum;
merge(x, z, x), merge(root, x, y);
return ans;
*/
}
inline int pre(int val) {
int x, y, z, ans, rk = rank(root, val);
split(root, x, y, rk);
split(x, z, x, rk - 1);
ans = t[x].sum;
merge(x, z, x); merge(root, x, y);
return ans;
}
inline int succ(int val) {
int x, y, z, ans, rk = rank(root, val + 1);
split(root, x, y, rk + 1); split(x, z, x, rk);
ans = t[x].sum;
merge(x, z, x); merge(root, x, y);
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("1.in", "r", stdin);
#endif
srand((unsigned)time(0));
t[0].rnd = t[0].sum = inf;
int n = read();
for(int i = 1; i <= n; ++i) {
int op = read(), x = read();
if(op == 1) insert(x);
if(op == 2) del(x);
if(op == 3) printf("%d\n", rank(root, x) + 1);
if(op == 4) printf("%d\n", find(x));
if(op == 5) printf("%d\n", pre(x));
if(op == 6) printf("%d\n", succ(x));
}
}

例题

LuoguP2161 [SHOI2009]会场预约

BZOJ1861: [Zjoi2006]Book 书架

BZOJ1251: 序列终结者

POJ3580 SuperMemo

fhqtreap初探的更多相关文章

  1. 【算法】fhqtreap初探

    NOIP回来就一直想着学平衡树...平衡树写久了调不出来真的会头脑发热.jpg 大概只写了几道题... fhqtreap是不需要旋转的平衡树,仅使用分裂合并,一样可以保持平衡树的性质,并且可以非常简单 ...

  2. 初探领域驱动设计(2)Repository在DDD中的应用

    概述 上一篇我们算是粗略的介绍了一下DDD,我们提到了实体.值类型和领域服务,也稍微讲到了DDD中的分层结构.但这只能算是一个很简单的介绍,并且我们在上篇的末尾还留下了一些问题,其中大家讨论比较多的, ...

  3. CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探

    CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...

  4. 从273二手车的M站点初探js模块化编程

    前言 这几天在看273M站点时被他们的页面交互方式所吸引,他们的首页是采用三次加载+分页的方式.也就说分为大分页和小分页两种交互.大分页就是通过分页按钮来操作,小分页是通过下拉(向下滑动)时异步加载数 ...

  5. JavaScript学习(一) —— 环境搭建与JavaScript初探

    1.开发环境搭建 本系列教程的开发工具,我们采用HBuilder. 可以去网上下载最新的版本,然后解压一下就能直接用了.学习JavaScript,环境搭建是非常简单的,或者说,只要你有一个浏览器,一个 ...

  6. .NET文件并发与RabbitMQ(初探RabbitMQ)

    本文版权归博客园和作者吴双本人共同所有.欢迎转载,转载和爬虫请注明原文地址:http://www.cnblogs.com/tdws/p/5860668.html 想必MQ这两个字母对于各位前辈们和老司 ...

  7. React Native初探

    前言 很久之前就想研究React Native了,但是一直没有落地的机会,我一直认为一个技术要有落地的场景才有研究的意义,刚好最近迎来了新的APP,在可控的范围内,我们可以在上面做任何想做的事情. P ...

  8. 【手把手教你全文检索】Apache Lucene初探

    PS: 苦学一周全文检索,由原来的搜索小白,到初次涉猎,感觉每门技术都博大精深,其中精髓亦是不可一日而语.那小博猪就简单介绍一下这一周的学习历程,仅供各位程序猿们参考,这其中不涉及任何私密话题,因此也 ...

  9. Key/Value之王Memcached初探:三、Memcached解决Session的分布式存储场景的应用

    一.高可用的Session服务器场景简介 1.1 应用服务器的无状态特性 应用层服务器(这里一般指Web服务器)处理网站应用的业务逻辑,应用的一个最显著的特点是:应用的无状态性. PS:提到无状态特性 ...

随机推荐

  1. 136. Single Number(位运算)

    Given a non-empty array of integers, every element appears twice except for one. Find that single on ...

  2. 《大话设计模式》c++实现 装饰者模式

    一.UML图   介绍 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创 ...

  3. python windows 下pip easy_install 使用错误的问题

    最近电脑重装了系统,又重新安装python .在官网下载了安装包后电脑成功安装了,但使用pip命令时出现以下错误 Fatal error in launcher: Unable to create p ...

  4. django 网站的搭建(2)

    这里使用nginx+uwsgi的方法来搭建生产环境 1,pip3.5  install uwsgi 下载uwsgi ,这里就不做测试了,一般不会出错 2,将django与uwsgi连接在一起 毕竟ru ...

  5. Yii2 数据缓存/片段缓存/页面缓存/Http缓存

  6. MySql 存储过程 退出

    mysql不支持quit, exit或return的方式退出编写存储过程时,为了业务规则需要,我们可能需要提前退出存储过程那么,我们可以利用leave label方式模拟实现quit退出的效果应用示例 ...

  7. Shell 脚本编程基础

    通过本文记录学习Linux Shell的一些笔记思考和总结,以加强记忆和理解.主要学习参考资料有: 1.<鸟哥的Linux私房菜-基础篇>第四版 2.菜鸟教程——Linux教程 3.ear ...

  8. 20165215 2017-2018-2 《Java程序设计》第4周学习总结

    20165215 2017-2018-2 <Java程序设计>第4周学习总结 教材学习内容总结 chapter5 子类与父类 子类的定义使用关键字extends 任何类都是Object类的 ...

  9. mac电脑复制粘贴使用command+c command+v

    mac电脑复制粘贴使用command+c command+v系统偏好设置--键盘--修饰键(右下角),将ctrl键和command键的功能对换一下即可用ctrl+c ctrl+v复制粘贴缺点:所有的c ...

  10. QXDM操作应用

    QXDM(The QUALCOMM Extensible Diagnostic Monitor)是高通公司(Qualcomm)公司发布的可以对手机终端所发数据进行跟踪有效工具,通过对数据的分析可以诊断 ...