Bzoj2673 3961: [WF2011]Chips Challenge 费用流
国际惯例题面:
如果我们枚举放几个零件的话,第二个限制很容易解决,但是第一个怎么办?(好的,这么建图不可做)
考虑我们枚举每行每列最多放几个零件t,然后计算零件总数sum。这样如果可行的话,则有t*B<=sum*A。
考虑第一个限制怎么办。我们可以钦定所有可行的位置都放上零件,然后再把多的零件拆下来。
我们令sxi为第i行能放的最多零件数,syi为第i列能放的最多零件数。
由源点向每一行连流量sxi费用0的边,每一列向汇点连流量syi费用0的边。
然后让每一行i向每一列i连流量t费用0的边,表示第i行和第j列最多同时不拆(留下)t个零件。
最后对于所有输入为'.'的格子ij,由第i行向第j列连容量1费用1的边,表示拆下第i行第j列的零件。
跑费用流,必须满流才满足题意(零件要么行和列同时留下,要么拆掉),费用表示拆掉的零件个数。
然后用留下的零件个数和t去比较是否合法,计算答案就行了。
感觉这题就是给了我们一种网络流建图,补集转化的姿势(如果选择的流量行列不移动统一,那么去掉的流量是否统一?如果选择的不好限制,去掉的是否容易限制?)
代码:
#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
const int maxn=1e2+1e1,maxe=maxn*maxn;
const int inf=0x3f3f3f3f; char in[maxn][maxn];
int s[maxn],t[maxe<<],nxt[maxe<<],f[maxe<<],c[maxe<<],cnt;
int dis[maxn],inq[maxn],ins[maxn],st,ed,cst;
int sx[maxn],sy[maxn],su,ini;
int n,A,B,ans; inline void coredge(int from,int to,int flow,int cost) {
t[++cnt] = to , f[cnt] = flow , c[cnt] = cost ,
nxt[cnt] = s[from] , s[from] = cnt;
}
inline void singledge(int from,int to,int flow,int cost) {
coredge(from,to,flow,cost) , coredge(to,from,,-cost);
}
inline bool spfa() {
memset(dis,0x3f,sizeof(dis)) , dis[st] = ;
std::queue<int> q; q.push(st) , inq[st] = ;
while( q.size() ) {
const int pos = q.front(); q.pop() , inq[pos] = ;
for(int at=s[pos];at;at=nxt[at])
if( f[at] && dis[t[at]] > dis[pos] + c[at] ) {
dis[t[at]] = dis[pos] + c[at];
if( !inq[t[at]] ) q.push(t[at]) , inq[t[at]] = ;
}
}
return dis[ed] != inf;
}
inline int dfs(int pos,int flow) {
if( pos == ed ) return flow;
int ret = , now = ; ins[pos] = ;
for(int at=s[pos];at;at=nxt[at])
if( f[at] && !ins[t[at]] && dis[t[at]] == dis[pos] + c[at] ) {
now = dfs(t[at],std::min(flow,f[at])) ,
ret += now , flow -= now , cst += c[at] * now ,
f[at] -= now , f[at^] += now;
if( !flow ) return ins[pos] = , ret;
}
if( !ret ) dis[pos] = inf;
return ins[pos] = , ret;
}
inline int flow() { // we must got full flow .
int ret = , now = ;
while( spfa() ) while( ( now = dfs(st,inf) ) ) ret += now;
return ret;
} inline void build(int t) {
memset(s,,sizeof(s)) , cnt = , st = n * + , ed = st + , cst = ;
#define cov(x,id) (x*2-1+id)
for(int i=;i<=n;i++) {
singledge(st,cov(i,),sx[i],) ,
singledge(cov(i,),cov(i,),t,) ,
singledge(cov(i,),ed,sy[i],) ;
}
for(int i=;i<=n;i++) for(int j=;j<=n;j++) if( in[i][j] == '.' ) singledge(cov(i,),cov(j,),,);
}
inline int calc(int t) {
build(t);
if( flow() != su ) return -; // illegal .
int used = su - cst;
return used * A >= t * B ? used - ini : -;
} int main() {
static int cse;
while( scanf("%d%d%d",&n,&A,&B) == && ( n || A || B ) ) {
memset(sx,,sizeof(sx)) , memset(sy,,sizeof(sy)) , ini = su = , ans = -;
for(int i=;i<=n;i++) {
scanf("%s",in[i]+);
for(int j=;j<=n;j++){
if( in[i][j] != '/' ) ++sx[i] , ++sy[j] , ++su;
ini += in[i][j] == 'C';
}
}
for(int i=;i<=n;i++) ans = std::max( ans , calc(i) );
printf("Case %d: ",++cse);
if( !~ans ) puts("impossible");
else printf("%d\n",ans);
}
return ;
}
(话说我都多路增广+码内O2了才卡到332MS,那几个几十MS过掉的是怎么做到的)
華やかな 煌びやかな運命を
做着拥有绚烂命运的梦
夢見て 泣いた夜は
却因为这样的梦 止不住泪水
银色の流星も泣いている
银色的流星也在哭泣
ナツシスに向けて
向着水仙花海
あっけなく さよならを告げぬよう
不想轻易说出再见
唇が 告げぬように
所以咬紧双唇
呟きに星空も木霊する
唯有轻声细语回响在星空下
ナツシスに向けて
朝着水仙
いつまでも届け
将它传递到永远
Bzoj2673 3961: [WF2011]Chips Challenge 费用流的更多相关文章
- BZOJ2673 [Wf2011]Chips Challenge 费用流 zkw费用流 网络流
https://darkbzoj.cf/problem/2673 有一个芯片,芯片上有N*N(1≤N≤40)个插槽,可以在里面装零件. 有些插槽不能装零件,有些插槽必须装零件,剩下的插槽随意. 要求装 ...
- bzoj 3961: [WF2011]Chips Challenge【最小费用最大流】
参考:https://blog.csdn.net/Quack_quack/article/details/50554032 神建图系列 首先把问题转为全填上,最少扣下来几个能符合条件 先考虑第2个条件 ...
- bzoj3961[WF2011]Chips Challenge
题意 给出一个n*n的网格,有些格子必须染成黑色,有些格子必须染成白色,其他格子可以染成黑色或者白色.要求最后第i行的黑格子数目等于第i列的黑格子数目,且某一行/列的格子数目不能超过格子总数的A/B. ...
- [Wf2011]Chips Challenge
两个条件都不太好处理 每行放置的个数实际很小,枚举最多放x 但还是不好放 考虑所有位置先都放上,然后删除最少使得合法 为了凑所有的位置都考虑到,把它当最大流 但是删除最少,所以最小费用 行列相关,左行 ...
- 【BZOJ 2673】[Wf2011]Chips Challenge
题目大意: 传送门 $n*n$的棋盘,有一些位置可以放棋子,有一些已经放了棋子,有一些什么都没有,也不能放,要求放置以后满足:第i行和第i列的棋子数相同,同时每行的棋子数占总数比例小于$\frac{A ...
- 【UVALive - 5131】Chips Challenge(上下界循环费用流)
Description A prominent microprocessor company has enlisted your help to lay out some interchangeabl ...
- 【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)
[BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sam ...
- Day5费用流
算法 zkw费用流:多路增广,增光D[y]=D[i]+c的边 无源汇上下界最小费用可行流 每次强行增加下界的流量 类似网络流,拆边 原边的费用为c,拆出来的边费用为0 负边和负圈 直接应用 SDOI2 ...
- hdu-5988 Coding Contest(费用流)
题目链接: Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
随机推荐
- Django配置富文本编辑器kindeditor
一.简介 django是一个容易快速上手的web框架,用它来创建内容驱动型的网站(比如独立博客)十分方便.遗憾的是,django并没有提供官方的富文本编辑器,而后者恰好是内容型网站后台管理中不可或缺的 ...
- ARMV8 datasheet学习笔记4:AArch64系统级体系结构之编程模型(1)-EL/ET/ST
1.前言 ARMV8系统级编程模型主要包括异常级别.运行状态.安全状态.同步异常.异步异常.DEBUG 本文主要对系统级编程模型做一个概要介绍 2. 异常级别 2.1 Exception level概 ...
- GCC选项_-Wl,-soname 及 DT_NEEDED 的解释
-Wl选项告诉编译器将后面的参数传递给链接器. -soname则指定了动态库的soname(简单共享名,Short for shared object name) soname的关键功能是它提供了兼容 ...
- java中不同类型的数值占用字节数
在Java中一共有8种基本数据类型,其中有4种整型,2种浮点类型,1种用于表示Unicode编码的字符单元的字符类型和1种用于表示真值的boolean类型.(一个字节等于8个bit) 1.整型 类型 ...
- Oracle实体化视图
1.减轻网络负担:通过MV将数据从一个数据库分发到多个不同的数据库上,通过对多个数据库访问来减轻对单个数据库的网络负担. 2.搭建分发环境:通过从一个中央数据库将数据分发到多个节点数据库,达到分发数 ...
- 001_a记录和canme的区别
1.什么是域名解析? 域名解析就是国际域名或者国内域名以及中文域名等域名申请后做的到IP地址的转换过程.IP地址是网路上标识您站点的数字地址,为了简单好记,采用域名来代替ip地址标识站点地址.域名的解 ...
- CF126B
CF126B Password 题意: 给出一个字符串 H,找一个最长的字符串 h,使得它既作为前缀出现过.又作为后缀出现过.还作为中间的子串出现过. 解法: 沿着 $ next_n $ 枚举字符串, ...
- Django ORM中使用update_or_create功能再解
以前,我解过这个问题,现在百度搜索,发了像也只能找到我这个帖子. https://www.cnblogs.com/aguncn/p/4922654.html 今天,看了看官方文档,关于这个update ...
- python爬取京东价格
昨天准备爬取一个京东商品的价格,正则写好了一直是空的 后来我去页面里面看了下,价格标签里果然是空的 百度了下,大家都说是js来控制显示价格的 于是去抓包试试,找到了一条mgets的请求 中间很多参数不 ...
- Storm通信机制(了解)
Worker间的通信:经常需要通过网络跨节点进行,Storm使用ZeroMQ或Netty(0.9以后默认使用)作为进程间通信的消息框架. Worker进程内部通信:不同worker的thread通信使 ...