【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理
来两道套路几乎一致的题目
【BZOJ2839】集合计数
Description
一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
首先我们发现他要求取出的集合是不同的
所以通常的套路是容斥令一个东西
在保证取出的集合是不同的情况下求出那个时候的答案
因为如果按照集合重复来容斥就比较复杂
我们考虑交集至少为i的方案数
有f(i)=C(n,i)*(2^(2^(n-i))-1)
这个是什么意思呢,首先求出i个的位置
然后剩余的位置构成的子集有2^(n-i)个
然后我们在里面选C(X,1)+C(X,2)+C(X,3)+...+C(X,X)=2^(2^(n-i))-1
然后就开始套路了,也算是彻底认识了容斥
接下来就是如何算容斥系数的事情了
我们考虑这样来算:计算它在之前被算了多少次
以小学的3个元素的维恩图举例
A,B,C =1
那么AB(其他同)算了2次 即C(2,1)
而其实际需要1次,所以-1
而ABC算了 C(3,1)-C(3,2)
而其实际需要1次,所以+1
也就是在计算i的时候大小为j的被计算了C(i,j)次
在这道题里
f(k)=1
f(k+1)=-C(k+1,k)
f(k+2)=-C(k+2,k)+C(k+1,k)*C(k+2,k+1)
而很套路的公式是
C(n,m)×C(m,s)=C(n,s)*C(n-s,n-m)
所以啊。。就可以推出f(i)的abs等于C(i,k)这件事情
【BZOJ3622】已经没有什么好害怕的了
又是一道套路题。。
首先排序显然,但随便yy一下好像没啥做法
然后还是一件很有技巧的事情
f[i][j]表示考虑到i,已经确定的数中有j个药片>糖果
然后最重要的性质出来了:
对于i‘>i 那么i’满足的范围包含i的范围
所以就可以搞dp了
f[i][j]=f[i-1][j]+f[i-1][j-1]*(k-j+1) (k表示最大满足范围)
为什么转移是这样的呢?
因为我的f[i-1][j]转移过来是不考虑它填在哪
然后dp完开始套路
注意到我们的f现在的实际意义是至少有j个
所以我们就可以愉快的和上一题一样容斥了
最终答案就等于
sigma(f[n][j]*(-1)^(..)C(j,k)------->这一项是容斥系数);
【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了的更多相关文章
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- BZOJ2839集合计数
题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~ ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
随机推荐
- idea常用快捷键及自定义快捷键汇总
以下都是挨个进行验证过的 生成get和set方法为:alt+insert 自动补全返回值,自动补全变量名称和属性名称:ctrl+alt+v 输入System.out.println()的快捷方法是:输 ...
- GC.SuppressFinalize()的正确用法
SuppressFinalize函数是: 该方法在对象头中设置一个位,系统在调用终结器时将检查这个位.obj 参数应为此方法的调用方. 实现 IDisposable 接口的对象可以从 IDisposa ...
- C# 面向对象的base的使用
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...
- Zabbix 监控服务
熟悉了解一些 zabbix 基础项目监控 zabbix_get 相关操作 :获取 item 监控数据 基本格式: -s --host: 指定客户端主机名或者IP -p --port:客户端端口,默认 ...
- [C++]栈区(栈)与堆区(类链表)[转/摘]
一.预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其 操 ...
- Java对象与JSON互相转换jsonlib以及手动创建JSON对象与数组——(二)
首先声明一下,jsonlib转换与GSON相比太差劲了,操作不是一般的繁琐.GSON可以直接转换成各种集合与对象类型.强烈推荐使用GSON.而且GSON一个方法就可以解决,jsonlib转来转去太繁琐 ...
- aircrack-ng笔记
开启监听: airmon-ng start wlan0 抓包: airodump-ng wlan0mon 查看wifi ^C结束 airodump-ng -c 6 --bssid C8:3A:35:3 ...
- Kaggle Titanic补充篇
1.关于年龄Age 除了利用平均数来填充,还可以利用正态分布得到一些随机数来填充,首先得到已知年龄的平均数mean和方差std,然后生成[ mean-std, mean+std ]之间的随机数,然后 ...
- startup_MK64F12.s文件解析
1.前言 本文主要对freescale芯片 MK64F12的启动汇编文件进行注释解析. 2.文件注释 /* ---------------------------------------------- ...
- dubbo系列六、SPI扩展Filter隐式传参
一.实现Filter接口 1.消费者过滤器:ConsumerTraceFilter.java package com.dubbo.demo.Filter; import com.alibaba.dub ...