1

2 It provides a way to initialize H2O services on each node in the Spark cluster and to access data stored in data structures of Spark and H2O.

3 Internal Backend  is easiest to deploy; however when Spark or YARN kills the executor - which is not an unusual case - the entire H2O cluster goes down because H2O does not support high availability.

4 The internal backend is the default for behavior for Sparkling Water.  Another way to change type of backend is by calling the setExternalClusterMode() or setInternalClusterMode() method on the H2OConf class. H2OConf is simple wrapper around SparkConf and inherits all properties in the Spark configuration.

5 好像在安装sparkingwater时,就会把pyspark和H2O装好: pip install h2o_pysparkling_2.3

=======================

1 启动spark :  ./sbin/start-master.sh      ./sbin/start-slave.sh spark://zcy-VirtualBox:7077

2 可以先运行一个很简单的脚本,看环境是否ready ,为了运行成功,需要把虚拟机内存调大(我改成了2g)

from pysparkling import *
from pyspark.sql import SparkSession
import h2o # Initiate SparkSession
spark = SparkSession.builder.appName("App name").getOrCreate() # Initiate H2OContext
hc = H2OContext.getOrCreate(spark) # Stop H2O and Spark services
h2o.cluster().shutdown()
spark.stop()
print ""

./bin/spark-submit --master spark://zcy-VirtualBox:7077  --conf "spark.executor.memory=1g" /home/zcy/working/tst.py

结果如下

3 运行一个稍微复杂的脚本:

import h2o
from datetime import datetime from pyspark import SparkConf, SparkFiles
from pyspark.sql import Row, SparkSession
import os
from pysparkling import * # Refine date column
def refine_date_col(data, col):
data["Day"] = data[col].day()
data["Month"] = data[col].month()
data["Year"] = data[col].year()
data["WeekNum"] = data[col].week()
data["WeekDay"] = data[col].dayOfWeek()
data["HourOfDay"] = data[col].hour() # Create weekend and season cols
# Spring = Mar, Apr, May. Summer = Jun, Jul, Aug. Autumn = Sep, Oct. Winter = Nov, Dec, Jan, Feb.
# data["Weekend"] = [ if x in ("Sun", "Sat") else for x in data["WeekDay"]]
data["Weekend"] = ((data["WeekDay"] == "Sun") | (data["WeekDay"] == "Sat"))
data["Season"] = data["Month"].cut([, , , , , ], ["Winter", "Spring", "Summer", "Autumn", "Winter"]) # This is just helper function returning path to data-files
def _locate(file_name):
if os.path.isfile("/home/zcy/working/data_tst/" + file_name):
return "/home/zcy/working/data_tst/" + file_name
else:
print "eeeeeeeeeeee" spark = SparkSession.builder.appName("ChicagoCrimeTest").getOrCreate()
# Start H2O services
h2oContext = H2OContext.getOrCreate(spark)
# Define file names
chicagoAllWeather = "chicagoAllWeather.csv"
chicagoCensus = "chicagoCensus.csv"
chicagoCrimes10k = "chicagoCrimes10k.csv.zip" # h2o.import_file expects cluster-relative path
f_weather = h2o.upload_file(_locate(chicagoAllWeather))
f_census = h2o.upload_file(_locate(chicagoCensus))
f_crimes = h2o.upload_file(_locate(chicagoCrimes10k))
print "" # Transform weather table
# Remove 1st column (date)
f_weather = f_weather[:] # Transform census table
# Remove all spaces from column names (causing problems in Spark SQL)
col_names = list(map(lambda s: s.strip().replace(' ', '_').replace('+', '_'), f_census.col_names)) # Update column names in the table
# f_weather.names = col_names
f_census.names = col_names # Transform crimes table
# Drop useless columns
f_crimes = f_crimes[:] # Set time zone to UTC for date manipulation
h2o.cluster().timezone = "Etc/UTC" # Replace ' ' by '_' in column names
col_names = list(map(lambda s: s.replace(' ', '_'), f_crimes.col_names))
f_crimes.names = col_names
refine_date_col(f_crimes, "Date")
f_crimes = f_crimes.drop("Date") # Expose H2O frames as Spark DataFrame
print ""
df_weather = h2oContext.as_spark_frame(f_weather)
df_census = h2oContext.as_spark_frame(f_census)
df_crimes = h2oContext.as_spark_frame(f_crimes) # Register DataFrames as tables
df_weather.createOrReplaceTempView("chicagoWeather")
df_census.createOrReplaceTempView("chicagoCensus")
df_crimes.createOrReplaceTempView("chicagoCrime") crimeWithWeather = spark.sql("""SELECT
a.Year, a.Month, a.Day, a.WeekNum, a.HourOfDay, a.Weekend, a.Season, a.WeekDay,
a.IUCR, a.Primary_Type, a.Location_Description, a.Community_Area, a.District,
a.Arrest, a.Domestic, a.Beat, a.Ward, a.FBI_Code,
b.minTemp, b.maxTemp, b.meanTemp,
c.PERCENT_AGED_UNDER_18_OR_OVER_64, c.PER_CAPITA_INCOME, c.HARDSHIP_INDEX,
c.PERCENT_OF_HOUSING_CROWDED, c.PERCENT_HOUSEHOLDS_BELOW_POVERTY,
c.PERCENT_AGED_16__UNEMPLOYED, c.PERCENT_AGED_25__WITHOUT_HIGH_SCHOOL_DIPLOMA
FROM chicagoCrime a
JOIN chicagoWeather b
ON a.Year = b.year AND a.Month = b.month AND a.Day = b.day
JOIN chicagoCensus c
ON a.Community_Area = c.Community_Area_Number""") # Publish Spark DataFrame as H2OFrame with given name
crimeWithWeatherHF = h2oContext.as_h2o_frame(crimeWithWeather, "crimeWithWeatherTable")
print ""
# Transform selected String columns to categoricals
cat_cols = ["Arrest", "Season", "WeekDay", "Primary_Type", "Location_Description", "Domestic"]
for col in cat_cols :
crimeWithWeatherHF[col] = crimeWithWeatherHF[col].asfactor() # Split frame into two - we use one as the training frame and the second one as the validation frame
splits = crimeWithWeatherHF.split_frame(ratios=[0.8])
train = splits[]
test = splits[]
print ""
h2o.download_csv(train,'/home/zcy/working/data_tst/ret/train.csv')
h2o.download_csv(test,'/home/zcy/working/data_tst/ret/test.csv') # stop H2O and Spark services
h2o.cluster().shutdown()
spark.stop()

3 运行脚本,

./bin/spark-submit --master spark://zcy-VirtualBox:7077  --conf "spark.executor.memory=1g" /home/zcy/working/sparkH2O.py

sparking water的更多相关文章

  1. [LeetCode] Pacific Atlantic Water Flow 太平洋大西洋水流

    Given an m x n matrix of non-negative integers representing the height of each unit cell in a contin ...

  2. [LeetCode] Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  3. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  4. [LeetCode] Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  5. [LeetCode] Container With Most Water 装最多水的容器

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). ...

  6. 如何装最多的水? — leetcode 11. Container With Most Water

    炎炎夏日,还是呆在空调房里切切题吧. Container With Most Water,题意其实有点噱头,简化下就是,给一个数组,恩,就叫 height 吧,从中任选两项 i 和 j(i <= ...

  7. 【leetcode】Container With Most Water

    题目描述: Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ...

  8. [LintCode] Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  9. [LintCode] Container With Most Water 装最多水的容器

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

随机推荐

  1. Pycharm中.py文件头信息配置

    在社区版的Pycharm开发软件中设置每次新建.py文件都会自动生成如下信息 #! /usr/bin/env python # -*- coding:utf-8 -*- # Author: Tdcqm ...

  2. android的左右滑动效果实现-ViewFlipper

    说到android的左右滑动效果我们可以说是在每个应用上面都可以看到这样的效果,不管是微博,还是QQ等.实现左右滑动的方式很多,有ViewPaer(不过这个和需要android-support-v4. ...

  3. sql操作总结

    SQL 语句的多表查询方式例如:按照 department_id 查询 employees(员工表)和 departments(部门表)的信息.方式一(通用型):SELECT ... FROM ... ...

  4. 【iCore4 双核心板_ARM】例程四:USART实验——通过命令控制LED

    实验原理: 开发板上自带一片CH340芯片,完成本实验电脑需要安装CH340驱动, CH340的TXD连接STM32的GPIO(PXC7),CH340的RXD连接STM32的 GPIO(PC6),通过 ...

  5. [备份]EntityFramework

    本视频和分步演练介绍通过 Code First 开发建立新数据库.这个方案包括建立不存在的数据库(Code First 创建)或者空数据库(Code First 向它添加新表).借助 Code Fir ...

  6. spring 手动添加 bean 到容器,例子 :多数据源配置

    package com.thunisoft.spsjsb.config.db.decrypt; import com.alibaba.druid.pool.DruidDataSource; impor ...

  7. tomcat 下安装 MantisBT

    环境 OS:win8.1 up1 64bit tomcat :9.0.0 64bit php: php-7.1.7-nts-Win32-VC14-x64.zip postgres: postgresq ...

  8. Tomcat -- 启动错误 -- 解决锦集

    java.lang.NoSuchMethodException: org.apache.catalina.deploy.WebXml addFilter :在Tomacat7的context.xml文 ...

  9. iOS开发-- 开发中遇到的问题汇总

    1. CUICatalog: Invalid asset name supplied: 今天写了加载图片,默认图片写的是[UIImage imageNamed:@""],之后就报下 ...

  10. 安装redis出现cc adlist.o /bin/sh:1:cc:not found的解决方法

    安装redis时 提示执行make命令时提示 CC adlist.o /bin/sh: cc: 未找到命令   问题原因:这是由于系统没有安装gcc环境,因此在进行编译时才会出现上面提示,当安装好gc ...