Micro- and macro-averages
Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs.
A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).
To illustrate why, take for example precision Pr=TP(TP+FP)Pr=TP(TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:
- Class A: 1 TP and 1 FP
- Class B: 10 TP and 90 FP
- Class C: 1 TP and 1 FP
- Class D: 1 TP and 1 FP
You can see easily that PrA=PrC=PrD=0.5PrA=PrC=PrD=0.5, whereas PrB=0.1PrB=0.1.
- A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4Pr=0.5+0.1+0.5+0.54=0.4
- A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123Pr=1+10+1+12+100+2+2=0.123
These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).
Micro- and macro-averages的更多相关文章
- F1 score,micro F1score,macro F1score 的定义
F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976 本篇博客可能会继续更新 最近在 ...
- 机器学习--Micro Average,Macro Average, Weighted Average
根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...
- Micro和Macro性能学习【转载】
转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...
- 多分类评测标准(micro 和 macro)
- (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS
Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in ...
- Java资源大全中文版(Awesome最新版)
Awesome系列的Java资源整理.awesome-java 就是akullpp发起维护的Java资源列表,内容包括:构建工具.数据库.框架.模板.安全.代码分析.日志.第三方库.书籍.Java 站 ...
- Java Bloom filter几种实现比较
英文原始出处: Bloom filter for Scala, the fastest for JVM 本文介绍的是用Scala实现的Bloom filter. 源代码在github上.依照性能测试结 ...
- 【Code Tools】Java微基准测试工具JMH之入门篇
一.JMH是什么 JMH是一个Java工具,用于构建.运行和分析用Java和其他语言编写的以JVM为目标的 nano/micro/milli/macro 基准测试. 二.基本注意事项 1)运行JMH基 ...
- [转]awsome-java
原文链接 Awesome Java A curated list of awesome Java frameworks, libraries and software. Contents Projec ...
- 多分类评价指标python代码
from sklearn.metrics import precision_score,recall_score print (precision_score(y_true, y_scores,ave ...
随机推荐
- NOIP2006能量项链
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...
- ActiveMQ producer 提交事务时突然宕机,会发生什么
producer 在提交事务时,发生宕机,commit 的命令没有发送到 broker,这时会发生什么? ActiveMQ 开启事务发送消息的步骤: session.getTransactionCon ...
- Eclipse错误:The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path
该报错是由于缺少servlet-api.jar造成的,将servlet-api.jar复制到项目下的WEB-INF/lib目录下即可 servlet-api.jar在tomcat的lib目录下有,可以 ...
- Android 之常用布局
LinearLayout 线性布局. android:orientation="horizontal" 制定线性布局的排列方式 水平 horizontal 垂直 vertical ...
- forget stereo step word out8
1★ stereo st əri əu 立体的 2★ step st əp 后,前妻所生,步骤
- Win10系列:JavaScript综合实例1
上面几个小节讲解了使用HTML5和JavaScript语言开发Windows 应用商店应用时会用到的一些技术,本小节将前面介绍的知识融合在一起创建一个菜谱应用程序,帮助读者更进一步地理解和掌握这些知识 ...
- VirtualBox安装CentOS7的网络配置
VirtualBox安装CentOS7的网络配置 这几天在本机VirtualBox安装CentOS时遇到了网络的坑... VirtualBox的下载地址:https://www.virtualbox. ...
- SpringMVC中文乱码的解决办法
中文乱码分类: (1)按照请求分类: GET请求乱码 POST请求乱码 (2)按照乱码位置分类 从前台传到后台的数据乱码(存储到数据库中的数据乱码) 从后台传到前台的数据乱码(显示在页面的数据乱码) ...
- 生产者与消费者问题,C++利用bind基于对象实现与面向对象实现
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- 十二. Python基础(12)--生成器
十二. Python基础(12)--生成器 1 ● 可迭代对象(iterable) An object capable of returning its members one at a time. ...