题目链接:传送门

题目:

B. Friends and Presents
time limit per test
second
memory limit per test
megabytes
input
standard input
output
standard output You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends. In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like. Your task is to find such minimum number v, that you can form presents using numbers from a set , , ..., v. Of course you may choose not to present some numbers at all. A positive integer number greater than is called prime if it has no positive divisors other than and itself.
Input The only line contains four positive integers cnt1, cnt2, x, y ( ≤ cnt1, cnt2 < ; cnt1 + cnt2 ≤ ;  ≤ x < y ≤ ·) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output Print a single integer — the answer to the problem.
Examples
Input
Copy Output
Copy Input
Copy Output
Copy Note In the first sample you give the set of numbers {, , } to the first friend and the set of numbers {} to the second friend. Note that if you give set {, , } to the first friend, then we cannot give any of the numbers , , to the second friend. In the second sample you give the set of numbers {} to the first friend, and the set of numbers {, , } to the second friend. Thus, the answer to the problem is .

题目大意:

  已知素数x,y,要求从1开始分别分配cnt1,cnt2个数给x,y,且分配给x的数不能是x的倍数,分配给y的数不能是y的倍数。求所有分掉的数中的最大值的最小值。

  1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104

思路:

  如果已知答案mid(滑稽):

  那么1-mid之间所有x的倍数不能分给x,那么优先分给y;

  同理:y的倍数都先分给x。当然lcm(x, y) = xy的倍数不能分,要减去这部分(容斥)。

  然后比较mid的没分配的部分,和cnt1,cnt2没分到的部分。

  这样可以用O(n)的时间验证答案,且答案是单调的,故用二分搞。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll; ll cnt1, cnt2, x, y; bool judge(ll mid) {
ll mul_of_x = mid/x;
ll mul_of_y = mid/y;
ll mul_of_xy = mid/x/y;
ll tmp = mid - mul_of_x - mul_of_y + mul_of_xy;
ll resx = max(cnt1 - mul_of_y + mul_of_xy, (ll));
ll resy = max(cnt2 - mul_of_x + mul_of_xy, (ll));
return resx + resy <= tmp;
} int main()
{
cin >> cnt1 >> cnt2 >> x >> y;
ll l = , r = 1e18;
ll ans = r;
while (l <= r) {
ll mid = (l+r) >> ;
if (judge(mid)) {
ans = min(ans, mid);
r = mid-;
}
else
l = mid+;
}
cout << ans << endl;
return ;
}

Codeforces483B. Friends and Presents(二分+容斥原理)的更多相关文章

  1. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  2. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  3. codeforces B. Friends and Presents(二分+容斥)

    题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...

  4. Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学

    8493833                 2014-10-31 08:41:26     njczy2010     B - Friends and Presents             G ...

  5. POJ2773(容斥原理)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11458   Accepted: 4001 Descr ...

  6. Codeforces 483 - A/B/C/D/E - (Done)

    题目链接:http://codeforces.com/contest/483 A - Counterexample - [简单构造题] Your friend has recently learned ...

  7. 几个解决k染色问题的指数级做法

    几个解决k染色问题的指数级做法 ——以及CF908H题解 给你一张n个点的普通无向图,让你给每个点染上k种颜色中的一种,要求对于每条边,两个端点的颜色不能相同,问你是否存在一种可行方案,或是让你输出一 ...

  8. Educational Codeforces Round 37-G.List Of Integers题解

    一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...

  9. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. Python Number 类型转换

    int(x [,base ]) 将x转换为一个整数 long(x [,base ]) 将x转换为一个长整数 float(x ) 将x转换到一个浮点数 complex(real [,imag ]) 创建 ...

  2. CAS5.3-搭建https服务器

    在上一篇文章中https://www.cnblogs.com/zhi-leaf/p/10417627.html.我们使用http://127.0.0.1:8080/cas/登录发现页面显示如下警告.该 ...

  3. Win10系列:UWP界面布局基础6

    资源合并 前面提到过,可以将资源字典定义在单独的XAML文件中,这样的文件被称为资源字典文件.那么,在需要引用文件中的资源时可以通过ResourceDictionary元素的MergedDiction ...

  4. excle

    1.固定某行列 如果要使一行不动,将光标定位于A2单击中,单击菜单"窗口----冻结窗格" 一行一列的,光标定位于B2单元格中,其它的以此类推 2.自动排序号 自动排序号,就是在某 ...

  5. Python Django 之 Template 模板的使用

    一.模板样式 注意: 1.url urlpatterns = { path('admin/', admin.site.urls), path('order/', views.order), path( ...

  6. SpringBoot技术点细解

    SpringBoot(主流) SpringBoot简介核心点:1.敏捷开发,轻量级框架 , 弊端:封装太完美,不方便扩展 (但是高版本中的springboot是可以自定义的)2.无需tomcat (j ...

  7. Windows server 2016 安装 TFS

    一:准备: 1.1下载TFS https://visualstudio.microsoft.com/zh-hans/tfs/ 1.2 下载SQL2017 http://msdn.itellyou.cn ...

  8. Android开发---如何操作资源目录中的资源文件3--圆角边框、背景颜色渐变效果、边框颜色

    Android开发---如何操作资源目录中的资源文件3 效果图 1.圆角边框 2.背景颜色渐变效果 1.activity_main.xml 描述: 定义了一个shape资源管理按钮 <?xml ...

  9. matlab中diff的用法

    若是diff(),括号里的元素为向量,那么前一个减后一个即为diff后的结果: 若diff(),括号里的元素为矩阵,那么下一行减上一行即为diff 后的结果:

  10. format格式

    The format part is where you can specify more precisely the format of the data that you expect. For ...