题目链接:传送门

题目:

B. Friends and Presents
time limit per test
second
memory limit per test
megabytes
input
standard input
output
standard output You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends. In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like. Your task is to find such minimum number v, that you can form presents using numbers from a set , , ..., v. Of course you may choose not to present some numbers at all. A positive integer number greater than is called prime if it has no positive divisors other than and itself.
Input The only line contains four positive integers cnt1, cnt2, x, y ( ≤ cnt1, cnt2 < ; cnt1 + cnt2 ≤ ;  ≤ x < y ≤ ·) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output Print a single integer — the answer to the problem.
Examples
Input
Copy Output
Copy Input
Copy Output
Copy Note In the first sample you give the set of numbers {, , } to the first friend and the set of numbers {} to the second friend. Note that if you give set {, , } to the first friend, then we cannot give any of the numbers , , to the second friend. In the second sample you give the set of numbers {} to the first friend, and the set of numbers {, , } to the second friend. Thus, the answer to the problem is .

题目大意:

  已知素数x,y,要求从1开始分别分配cnt1,cnt2个数给x,y,且分配给x的数不能是x的倍数,分配给y的数不能是y的倍数。求所有分掉的数中的最大值的最小值。

  1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104

思路:

  如果已知答案mid(滑稽):

  那么1-mid之间所有x的倍数不能分给x,那么优先分给y;

  同理:y的倍数都先分给x。当然lcm(x, y) = xy的倍数不能分,要减去这部分(容斥)。

  然后比较mid的没分配的部分,和cnt1,cnt2没分到的部分。

  这样可以用O(n)的时间验证答案,且答案是单调的,故用二分搞。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll; ll cnt1, cnt2, x, y; bool judge(ll mid) {
ll mul_of_x = mid/x;
ll mul_of_y = mid/y;
ll mul_of_xy = mid/x/y;
ll tmp = mid - mul_of_x - mul_of_y + mul_of_xy;
ll resx = max(cnt1 - mul_of_y + mul_of_xy, (ll));
ll resy = max(cnt2 - mul_of_x + mul_of_xy, (ll));
return resx + resy <= tmp;
} int main()
{
cin >> cnt1 >> cnt2 >> x >> y;
ll l = , r = 1e18;
ll ans = r;
while (l <= r) {
ll mid = (l+r) >> ;
if (judge(mid)) {
ans = min(ans, mid);
r = mid-;
}
else
l = mid+;
}
cout << ans << endl;
return ;
}

Codeforces483B. Friends and Presents(二分+容斥原理)的更多相关文章

  1. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  2. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  3. codeforces B. Friends and Presents(二分+容斥)

    题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...

  4. Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学

    8493833                 2014-10-31 08:41:26     njczy2010     B - Friends and Presents             G ...

  5. POJ2773(容斥原理)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11458   Accepted: 4001 Descr ...

  6. Codeforces 483 - A/B/C/D/E - (Done)

    题目链接:http://codeforces.com/contest/483 A - Counterexample - [简单构造题] Your friend has recently learned ...

  7. 几个解决k染色问题的指数级做法

    几个解决k染色问题的指数级做法 ——以及CF908H题解 给你一张n个点的普通无向图,让你给每个点染上k种颜色中的一种,要求对于每条边,两个端点的颜色不能相同,问你是否存在一种可行方案,或是让你输出一 ...

  8. Educational Codeforces Round 37-G.List Of Integers题解

    一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...

  9. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. windows启动/禁用telnet/IIS/ftp/IE等服务

    将需要启动的钩选,将要禁用的取消钩选确定即可:比如我这里要启动telnet客户端. 启动IIS将IIS可承载的Web核心和Internet两大项全钩选上即可,钩多了不影响功能.

  2. win7 忘记密码

    你可以找个PE来修改密码,用光盘或U盘做PE都行,现在很多PE都支持密码修改的!不过下面这个方法还是要用到PE:1. 进入pe2.进入c:\windows\system32下 更改magnify.ex ...

  3. Scanner类完成用户键盘录入

    l  Scanner类 Scanner类是引用数据类型的一种,我们可以使用该类来完成用户键盘录入,获取到录入的数据. Scanner使用步骤: 导包:import java.util.Scanner; ...

  4. Sql server中 如何用sql语句创建视图

    1.视图的作用 视图的作用: 第一点:使用视图,可以定制用户数据,聚焦特定的数据. 解释: 在实际过程中,公司有不同角色的工作人员,我们以销售公司为例的话, 采购人员,可以需要一些与其有关的数据,而与 ...

  5. mac+php+nginx+laravel配置启动

    首先保证mac安装php,nginx,composer 根据laravel中文文档进行安装 http://laravelacademy.org/post/6665.html 直接指向 composer ...

  6. Linux 第一周作业

    [](http://images2017.cnblogs.com/blog/1249774/201710/1249774-20171001234038872-10d31233192.pngd

  7. jquery 共用函数

    ready()方法 $(doxument).ready(fucntion(){ }) $().ready(function(){ }) $(function(){ }) 当文档加载后激活函数:     ...

  8. linux内核initcall

    include/linux/init.h #define pure_initcall(fn) __define_initcall(fn, 0) #define core_initcall(fn) __ ...

  9. 枚举,Math和Random

    1.实用类: 01.枚举 enum Student stu=new Student(); 我们为了保证用户一个健康的输入! 我们使用了封装特性! 用户就不能直接访问我们的属性了!! private c ...

  10. Python select 详解(转)

    I/O多路复用是在单线程模式下实现多线程的效果,实现一个多I/O并发的效果.看一个简单socket例子: import socket SOCKET_FAMILY = socket.AF_INET SO ...