Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门
题目:
B. Friends and Presents
time limit per test
second
memory limit per test
megabytes
input
standard input
output
standard output You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends. In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like. Your task is to find such minimum number v, that you can form presents using numbers from a set , , ..., v. Of course you may choose not to present some numbers at all. A positive integer number greater than is called prime if it has no positive divisors other than and itself.
Input The only line contains four positive integers cnt1, cnt2, x, y ( ≤ cnt1, cnt2 < ; cnt1 + cnt2 ≤ ; ≤ x < y ≤ ·) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output Print a single integer — the answer to the problem.
Examples
Input
Copy Output
Copy Input
Copy Output
Copy Note In the first sample you give the set of numbers {, , } to the first friend and the set of numbers {} to the second friend. Note that if you give set {, , } to the first friend, then we cannot give any of the numbers , , to the second friend. In the second sample you give the set of numbers {} to the first friend, and the set of numbers {, , } to the second friend. Thus, the answer to the problem is .
题目大意:
已知素数x,y,要求从1开始分别分配cnt1,cnt2个数给x,y,且分配给x的数不能是x的倍数,分配给y的数不能是y的倍数。求所有分掉的数中的最大值的最小值。
1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104
思路:
如果已知答案mid(滑稽):
那么1-mid之间所有x的倍数不能分给x,那么优先分给y;
同理:y的倍数都先分给x。当然lcm(x, y) = xy的倍数不能分,要减去这部分(容斥)。
然后比较mid的没分配的部分,和cnt1,cnt2没分到的部分。
这样可以用O(n)的时间验证答案,且答案是单调的,故用二分搞。
代码:
#include <bits/stdc++.h> using namespace std;
typedef long long ll; ll cnt1, cnt2, x, y; bool judge(ll mid) {
ll mul_of_x = mid/x;
ll mul_of_y = mid/y;
ll mul_of_xy = mid/x/y;
ll tmp = mid - mul_of_x - mul_of_y + mul_of_xy;
ll resx = max(cnt1 - mul_of_y + mul_of_xy, (ll));
ll resy = max(cnt2 - mul_of_x + mul_of_xy, (ll));
return resx + resy <= tmp;
} int main()
{
cin >> cnt1 >> cnt2 >> x >> y;
ll l = , r = 1e18;
ll ans = r;
while (l <= r) {
ll mid = (l+r) >> ;
if (judge(mid)) {
ans = min(ans, mid);
r = mid-;
}
else
l = mid+;
}
cout << ans << endl;
return ;
}
Codeforces483B. Friends and Presents(二分+容斥原理)的更多相关文章
- 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)
2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- codeforces B. Friends and Presents(二分+容斥)
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...
- Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学
8493833 2014-10-31 08:41:26 njczy2010 B - Friends and Presents G ...
- POJ2773(容斥原理)
Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11458 Accepted: 4001 Descr ...
- Codeforces 483 - A/B/C/D/E - (Done)
题目链接:http://codeforces.com/contest/483 A - Counterexample - [简单构造题] Your friend has recently learned ...
- 几个解决k染色问题的指数级做法
几个解决k染色问题的指数级做法 ——以及CF908H题解 给你一张n个点的普通无向图,让你给每个点染上k种颜色中的一种,要求对于每条边,两个端点的颜色不能相同,问你是否存在一种可行方案,或是让你输出一 ...
- Educational Codeforces Round 37-G.List Of Integers题解
一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- vp uml uninstall
1◆ vp uml uninstall D:\devsoft\ultimate\idea\plugins\sdeIJ D:\devsoft\ultimate\idea\bin\sde ...
- Sql server2008如何导入Excel文件数据?
sql server 中如何使用Excel文件导入数据?我做个测试,首先建立一个测试表(民族表) --创建一个民族表-- create table BdsNation( Uid int not nul ...
- Linux command automake
Linux command automake [Purpose] Learning linux command automake for generate Makefile.in for ...
- 【阅读笔记】《C程序员 从校园到职场》第四章 变量和函数
参考: Contents: 一.数据类型(对基本数据类型进行重定义——规范化) 二.变量和函数 (命名规则,注意事项) 三.静态变量及其使用 一.数据类型(对基本数据类型进行重定义——规范化) 1. ...
- Grafana展示報表數據的配置(二)
一.Grafana以圖表的形式展示KPI報表的結果數據1.按照日期顯示數據達標量與未達標量2.顯示當前報表的最大值.最小值.平均值.總量3.報表結果數據的鏈接分享與頁面嵌入,用戶無需登錄直接訪問報表統 ...
- HTTP协议详细解析
HTTP协议详解 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准. HTTP是一个基 ...
- 八. Python基础(8)--函数
八. Python基础(8)--函数 1 ● 函数返回布尔值 注意, 自定义的函数也可以是用来作逻辑判断的, 例如内置的startswith()等函数. def check_len(x): ' ...
- C/C++知识补充 (1)
● C++的圆括号运算符() 下列关于圆括号运算符的功能说法不正确的是(C) . A. 可用于强制类型转换 B 可用于类型构造 C 可用于类型声明 D 可用于函数调用 对大部分可重载的运算符来说,它既 ...
- nw.js的localStorage的物理储存位置
前言 因为在做美团外卖商家端的nw.js壳子项目,需要保证在壳子里面使用localStorage的数据可以持久化保存. 发现nw可以保存,即使删除应用重写打包也可以保存,所以解决了这个需求,但是还是需 ...
- 一次练习 发现的问题,malloc free 无效;findfirstfile失败,writefile失败的原因
#include <windows.h> #include <stdio.h> #include <shlwapi.h> #pragma comment(lib,& ...