Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门
题目:
B. Friends and Presents
time limit per test
second
memory limit per test
megabytes
input
standard input
output
standard output You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends. In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like. Your task is to find such minimum number v, that you can form presents using numbers from a set , , ..., v. Of course you may choose not to present some numbers at all. A positive integer number greater than is called prime if it has no positive divisors other than and itself.
Input The only line contains four positive integers cnt1, cnt2, x, y ( ≤ cnt1, cnt2 < ; cnt1 + cnt2 ≤ ; ≤ x < y ≤ ·) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output Print a single integer — the answer to the problem.
Examples
Input
Copy Output
Copy Input
Copy Output
Copy Note In the first sample you give the set of numbers {, , } to the first friend and the set of numbers {} to the second friend. Note that if you give set {, , } to the first friend, then we cannot give any of the numbers , , to the second friend. In the second sample you give the set of numbers {} to the first friend, and the set of numbers {, , } to the second friend. Thus, the answer to the problem is .
题目大意:
已知素数x,y,要求从1开始分别分配cnt1,cnt2个数给x,y,且分配给x的数不能是x的倍数,分配给y的数不能是y的倍数。求所有分掉的数中的最大值的最小值。
1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104
思路:
如果已知答案mid(滑稽):
那么1-mid之间所有x的倍数不能分给x,那么优先分给y;
同理:y的倍数都先分给x。当然lcm(x, y) = xy的倍数不能分,要减去这部分(容斥)。
然后比较mid的没分配的部分,和cnt1,cnt2没分到的部分。
这样可以用O(n)的时间验证答案,且答案是单调的,故用二分搞。
代码:
#include <bits/stdc++.h> using namespace std;
typedef long long ll; ll cnt1, cnt2, x, y; bool judge(ll mid) {
ll mul_of_x = mid/x;
ll mul_of_y = mid/y;
ll mul_of_xy = mid/x/y;
ll tmp = mid - mul_of_x - mul_of_y + mul_of_xy;
ll resx = max(cnt1 - mul_of_y + mul_of_xy, (ll));
ll resy = max(cnt2 - mul_of_x + mul_of_xy, (ll));
return resx + resy <= tmp;
} int main()
{
cin >> cnt1 >> cnt2 >> x >> y;
ll l = , r = 1e18;
ll ans = r;
while (l <= r) {
ll mid = (l+r) >> ;
if (judge(mid)) {
ans = min(ans, mid);
r = mid-;
}
else
l = mid+;
}
cout << ans << endl;
return ;
}
Codeforces483B. Friends and Presents(二分+容斥原理)的更多相关文章
- 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)
2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- codeforces B. Friends and Presents(二分+容斥)
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...
- Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学
8493833 2014-10-31 08:41:26 njczy2010 B - Friends and Presents G ...
- POJ2773(容斥原理)
Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11458 Accepted: 4001 Descr ...
- Codeforces 483 - A/B/C/D/E - (Done)
题目链接:http://codeforces.com/contest/483 A - Counterexample - [简单构造题] Your friend has recently learned ...
- 几个解决k染色问题的指数级做法
几个解决k染色问题的指数级做法 ——以及CF908H题解 给你一张n个点的普通无向图,让你给每个点染上k种颜色中的一种,要求对于每条边,两个端点的颜色不能相同,问你是否存在一种可行方案,或是让你输出一 ...
- Educational Codeforces Round 37-G.List Of Integers题解
一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- astah-professional-7_2_0安装
astah-professional-7_2_0-1安装 1● 下载文件 2● 安装 replace D:\Program\astahprofessional\inst\astah-p ...
- [Linux]Linux下修改snmp协议的默认161端口
一.Linux SNMP的配置 SNMP的简介和Linux下IPV4,IPV6地址的snmp协议开启可以参考上一个随笔:[Linux]CentOS6.9开启snmp支持IPV4和IPV6 二.修改默认 ...
- 二十. Python基础(20)--面向对象的基础
二十. Python基础(20)--面向对象的基础 1 ● 类/对象/实例化 类:具有相同属性.和方法的一类人/事/物 对象(实例): 具体的某一个人/事/物 实例化: 用类创建对象的过程→类名(参数 ...
- DevExpress WinForms v18.2新版亮点(四)
行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了DevExpress WinForms v1 ...
- SharePoint Framework 在Visual Studio Code中调试你的本地解决方案
博客地址:http://blog.csdn.net/FoxDave Visual Studio Code不知道大家都有没有,界面清爽,编辑快速,是一个非常好的前端开发工具.本文介绍如何使用Goog ...
- docker从初识到深入
1:使用docker有哪些优势: 更快交付你的应用(Faster delivery of your applications) 让部署和测试更简单(Deploying and scaling more ...
- JS(JQEERY) 获取JSON对象中的KEY VALUE
var json= { "Type": "Coding", "Height":100 }; for (var key in json) { ...
- <Consistency><of HBase><CAP><ACID>
Overview 讨论一些(分布式)(存储)系统的一致性 CAP原理 随着分布式事务的出现,传统的单机事务模型(ACID)已经无法胜任,尤其是对于一个高访问量.高并发的互联网分布式系统来说. 如何构建 ...
- nginx 隐藏nginx版本号
为什么要隐藏 Nginx 版本号:一般来说,软件的漏洞都与版本有关,隐藏版本号是为了防止恶意用户利用软件漏洞进行攻击 worker_processes 1; events { worker_conne ...
- prinft he sprintf
四.printf函数 printf函数返回一个格式化后的字符串. 语法:printf(format,arg1,arg2,arg++) 参数 format 是转换的格式,以百分比符号 (“%”) 开始到 ...