L1与L2正则化
过拟合
机器学习中,如果参数过多、模型过于复杂,容易造成过拟合。
结构风险最小化原理
在经验风险最小化(训练误差最小化)的基础上,尽可能采用简单的模型,以提高模型泛化预测精度。
正则化
为了避免过拟合,最常用的一种方法是使用正则化,例如L1和L2正则化。
所谓的正则化,就是在原来损失函数的基础上,加了一些正则化项,或者叫做模型复杂度惩罚项。
L2正则化
L2正则化即:\(L=E_{in}+\lambda\sum_j\omega^2_j\),其中,\(E_{in}\)是原来的损失函数;\(\lambda\)是正则化参数,可调整;\(\omega_j\)是参数。
由上可知,正则化是为了限制参数过多,避免模型过于复杂。因此,我们可以令高阶部分的权重\(\omega\)为0,这样就相当于从高阶转换为低阶。然而,这是个NP难问题,将其适度简化为:\(\sum_j\omega_j^2≤C\),令\(\omega_j\)的平方和小于\(C\)。这时,我们的目标就转换为:令\(E_{in}\)最小,但是要遵循\(w\)平方和小于\(C\)的条件,如下图所示:
L1正则化
L1正则化和L2正则化相似:\(L=E_{in}+\lambda\sum_j|\omega_j|\),同样地,图形如下:
L1与L2正则化
满足正则化条件,实际上是求解上面图中红色形状与蓝色椭圆的交点,即同时满足限定条件和\(E_{in}\)最小化。
对于L2来说,限定区域是圆,这样得到的解\(\omega_1\)或\(\omega_2\)(以二元为例)为0的概率很小,且很大概率是非零的。
对于L1来说,限定区域是正方形,方形与蓝色区域相交的交点是顶点的概率很大,这从视觉和常识上来看是很容易理解的。也就是说,正方形的凸点会更接近 \(E_{in}\)最优解对应的\(\omega\)位置,而凸点处必有\(\omega_1\)或\(\omega_2\)为0。这样,得到的解\(\omega_1\)或\(\omega_2\)为零的概率就很大了。所以,L1正则化的解具有稀疏性。
扩展到高维,同样的道理,L2的限定区域是平滑的,与中心点等距;而 L1 的限定区域是包含凸点的,尖锐的。这些凸点更接近\(E_{in}\)的最优解位置,而在这些凸点上,很多\(\omega_j\)为0。
参考链接
https://www.jianshu.com/p/76368eba9c90
https://segmentfault.com/a/1190000014680167?utm_source=tag-newest
https://blog.csdn.net/red_stone1/article/details/80755144
作者:@臭咸鱼
转载请注明出处:https://www.cnblogs.com/chouxianyu/
欢迎讨论和交流!
L1与L2正则化的更多相关文章
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- 深入理解L1、L2正则化
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...
- L1 与 L2 正则化
参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...
- Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x). Spark中实现了: (1)普通最小二乘法 (2)岭回归(L2正规化) (3)La ...
- day-17 L1和L2正则化的tensorflow示例
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...
- 机器学习中的L1、L2正则化
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...
- L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- L1、L2正则化详解
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- tensorflow 中的L1和L2正则化
import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.c ...
随机推荐
- PPM / PGM / PBM 图像文件格式
PPM / PGM / PBM 图像文件格式 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:在进行图像压缩后传输,然后解压缩显示的过程中,通常会用到P ...
- Andrew Ng机器学习课程17(2)
Andrew Ng机器学习课程17(2) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了利用value iteration和policy i ...
- 基于MSP430G2系列实现的步进电机控制
基于MSP430G2系列实现的步进电机控制 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 系列博客说明:此系列博客属于作者在大三大四阶段所储备的关于电子电路 ...
- centos(6,7) 系统常用命令
目录: 系统服务命令 文件操作 系统信息 文件和目录 文件搜索 挂载一个文件系统 磁盘空间 用户和群组 文件的权限 压缩与解压缩 YUM丶RPM 包 查看文件内容 文本处理 文件系统分析 初始化一个文 ...
- springboot集成webSocket能启动,但是打包不了war
1.pom.xml少packing元素 https://www.cnblogs.com/zeussbook/p/10790339.html 2.SpringBoot项目中增加了WebSocket功能无 ...
- Jira内存调整
java的metaspce怎么调大 元空间虚拟机控制元空间的增长.但是有些时候我们想限制其增长,比如通过显式在命令行中设置-XX:MaxMetaspaceSize.默认情况下,-XX:MaxMetas ...
- [转帖]新手必读,16个概念入门 Kubernetes
新手必读,16个概念入门 Kubernetes https://www.kubernetes.org.cn/5906.html 2019-09-29 22:13 中文社区 分类:Kubernetes教 ...
- 【转帖】计算机网络协议(三)——UDP、TCP、Socket
计算机网络协议(三)——UDP.TCP.Socket 2019年09月04日 11:09:41 to_be_better_one 阅读数 28794 文章标签: 计算机网络UDPTCPSocket 更 ...
- [NOIP提高组2018]货币系统
[TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...
- 第4章:LeetCode--链表
2. Add Two Numbers: /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNo ...