1 # -*- coding:utf-8 -*-
2 '''
3 抓取豆瓣电影某部电影的评论
4抓取电影
5 网址链接:https://movie.douban.com/subject/26630781/comments
6 为了抓取全部评论需要先进行登录
7 '''
8 from selenium import webdriver
9 import time
10 import codecs
11 import jieba
12 import jieba.analyse as analyse
13 from wordcloud import WordCloud
14 from scipy.misc import imread
15 from os import path
16
17 def get_douban_comments(url):
18 comments_list = [] # 评论列表
19 login_url = 'https://accounts.douban.com/login?source=movie'
20 user_name = '1111111' # 这里替换成你的豆瓣用户名
21 password = '11111111' # 这里替换成你的密码
22 driver = webdriver.Firefox() # 启动Firefox()
23 driver.get(login_url)
24 driver.find_element_by_id('email').clear() # 清除输入框
25 driver.find_element_by_id('email').send_keys(user_name) # 输入用户名
26 driver.find_element_by_id('password').clear()
27 driver.find_element_by_id('password').send_keys(password) # 输入密码
28 captcha_field = raw_input('请打开浏览器输入验证码:') # 手动填入验证码
29 driver.find_element_by_id('captcha_field').send_keys(captcha_field)
30 driver.find_element_by_class_name('btn-submit').click() # 点击登录按钮
31 time.sleep(5) # 等待跳转到登录之后的页面
32 driver.get(url) # 定位到目标页面
33 driver.implicitly_wait(3) # 智能等待3秒
34 n = 501 # 页数
35 count = 10000 # 评论数目
36 while True:
37 try:
38 results = driver.find_elements_by_class_name('comment')
39 for result in results:
40 # author = result.find_elements_by_tag_name('a')[1].text # 作者
41 # vote = result.find_element_by_class_name('comment-vote').find_element_by_tag_name('span').text # 赞同数目
42 # time0 = result.find_element_by_class_name('comment-info').find_elements_by_tag_name('span')[1].text # 时间
43 comment = result.find_element_by_tag_name('p').text # 评论内容
44 comments_list.append(comment+u'\n')
45 print u"查找到第%d个评论" % count
46 count += 1
47 driver.find_element_by_class_name('next').click() # 点击下一页
48 print u'第%d页查找完毕!' % n
49 n += 1
50 time.sleep(4)
51 except Exception,e:
52 print e
53 break
54 with codecs.open('pjl_comment.txt','a',encoding='utf-8') as f:
55 f.writelines(comments_list)
56 print u"查找到第%d页,第%d个评论!" %(n,count)
57
58 # 得到所有关键词
59 def get_all_keywords(file_name):
60 word_lists = [] # 关键词列表
61 with codecs.open(file_name,'r',encoding='utf-8') as f:
62 Lists = f.readlines() # 文本列表
63 for List in Lists:
64 cut_list = list(jieba.cut(List))
65 for word in cut_list:
66 word_lists.append(word)
67 word_lists_set = set(word_lists) # 去除重复元素
68 sort_count = []
69 word_lists_set = list(word_lists_set)
70 length = len(word_lists_set)
71 print u"共有%d个关键词" % length
72 k = 1
73 for w in word_lists_set:
74 sort_count.append(w+u':'+unicode(word_lists.count(w))+u"次\n")
75 print u"%d---" % k + w+u":"+unicode(word_lists.count(w))+ u"次"
76 k += 1
77 with codecs.open('count_word.txt','w',encoding='utf-8') as f:
78 f.writelines(sort_count)
79
80 def get_top_keywords(file_name):
81 top_word_lists = [] # 关键词列表
82 with codecs.open(file_name,'r',encoding='utf-8') as f:
83 texts = f.read() # 读取整个文件作为一个字符串
84 Result = analyse.textrank(texts,topK=20,withWeight=True,withFlag=True)
85 n = 1
86 for result in Result:
87 print u"%d:" % n ,
88 for C in result[0]: # result[0] 包含关键词和词性
89 print C,u" ",
90 print u"权重:"+ unicode(result[1]) # 关键词权重
91 n += 1
92
93 # 绘制词云
94 def draw_wordcloud():
95 with codecs.open('pjl_comment.txt',encoding='utf-8') as f:
96 comment_text = f.read()
97 cut_text = " ".join(jieba.cut(comment_text)) # 将jieba分词得到的关键词用空格连接成为字符串
98 d = path.dirname(__file__) # 当前文件文件夹所在目录
99 color_mask = imread("F:/python2.7work/wordcloud/alice_color.png") # 读取背景图片
100 cloud = WordCloud(font_path=path.join(d,'simsun.ttc'),background_color='white',mask=color_mask,max_words=2000,max_font_size=40)
101 word_cloud = cloud.generate(cut_text) # 产生词云
102 word_cloud.to_file("pjl_cloud.jpg")
103
104
105
106 if __name__ == '__main__':
107 '''
108 url = 'https://movie.douban.com/subject/26630781/comments?start=10581&limit=20&sort=new_score'
109 get_douban_comments(url)
110 file_name = 'pjl_comment.txt'
111 get_top_keywords(file_name)
112 '''
113 draw_wordcloud()
- CVPR2018关键字分析生成词云图与查找
今日目标:爬取CVPR2018论文,进行分析总结出提到最多的关键字,生成wordCloud词云图展示,并且设置点击后出现对应的论文以及链接 对任务进行分解: ①爬取CVPR2018的标题,简介,关键字 ...
- 谁说程序员不浪漫?Python导出微信聊天记录生成爱的词云图
明天又双叒叕是一年一度的七夕恋爱节了! 又是一波绝好的机会!恩爱秀起来! 购物车清空!礼物送起来!朋友圈晒起来! 等等! 什么?! 你还没准备好七夕礼物么? 但其实你不知道要送啥? 原来又双叒叕要 ...
- python爬虫+词云图,爬取网易云音乐评论
又到了清明时节,用python爬取了网易云音乐<清明雨上>的评论,统计词频和绘制词云图,记录过程中遇到一些问题 爬取网易云音乐的评论 一开始是按照常规思路,分析网页ajax的传参情况.看到 ...
- 特朗普退出《巴黎协定》:python词云图舆情分析
1 前言 2017年6月1日,美国特朗普总统正式宣布美国退出<巴黎协定>.宣布退出<巴黎协定>后,特朗普似乎成了“全球公敌”. 特斯拉总裁马斯克宣布退出总统顾问团队 迪士尼董事 ...
- [超详细] Python3爬取豆瓣影评、去停用词、词云图、评论关键词绘图处理
爬取豆瓣电影<大侦探皮卡丘>的影评,并做词云图和关键词绘图第一步:找到评论的网页url.https://movie.douban.com/subject/26835471/comments ...
- 【爬虫+情感判定+Top10高频词+词云图】“谷爱凌”热门弹幕python舆情分析
一.背景介绍 最近几天,谷爱凌在冬奥会赛场上夺得一枚宝贵的金牌,为中国队贡献了自己的荣誉! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众网友弹幕的舆论导向,下面 ...
- 【爬虫+情感判定+Top10高频词+词云图】“刘畊宏“热门弹幕python舆情分析
一.背景介绍 最近一段时间,刘畊宏真是火出了天际,引起一股全民健身的热潮,毕竟锻炼身体,是个好事! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论 ...
- 【爬虫+情感判定+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析
目录 一.背景介绍 二.代码讲解-爬虫部分 2.1 分析弹幕接口 2.2 讲解爬虫代码 三.代码讲解-情感分析部分 3.1 整体思路 3.2 情感分析打标 3.3 统计top10高频词 3.4 绘制词 ...
- python 数据分析--词云图,图形可视化美国竞选辩论
这篇博客从用python实现分析数据的一个完整过程.以下着重几个python的moudle的运用"pandas",""wordcloud"," ...
随机推荐
- 常见的HTTP方法有哪些?
GET:请求指定的页面信息,返回实体主体: HEAD:类似于get请求,只不过返回的响应中没有具体的内容,用于捕获报头: POST:向指定资源提交数据进行处理请求(比如表单提交或者上传文件),.数据被 ...
- 面试题小议---BY gremount
Problem 1: 两个烧杯,一个放糖一个放盐,用勺子舀一勺糖到盐,搅拌均匀,然后舀一勺混合物会放糖的烧杯,问你两个烧杯哪个杂质多? 提示:相同.(1)可以用一个特殊数据计算一下,可以得到两个烧杯 ...
- Linux CentOS 使用Yum源安装MySQL 5.7
在CentOS(Fedora.RedHat)系统中,可以使用yum install mysql命令来安装MySQL,但所安装的MySql版本一般都较旧,所以更推荐通过源码编译安装或下载最新rpm安装包 ...
- 机器学习 - 算法 - PCA 主成分分析
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...
- iOS 点击空白处收回键盘的几个简单代码
//收回键盘1 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [self.view.subviews enumer ...
- 激活Microsoft Word 2010
先关闭系统的防火墙(像360安全卫士这类软件),再运行“office 2010 正版验证激活工具”,并点击“Install/Uninstall KMService”安装“KMS”服务器(如下图,在弹出 ...
- 基于pythonselect.select模块通信的实例讲解
基于python select.select模块通信的实例讲解 要理解select.select模块其实主要就是要理解它的参数, 以及其三个返回值. select()方法接收并监控3个通信列表, 第一 ...
- 【c# 学习笔记】阻止派生类重写虚成员
使用sealed 关键字可以防止一个类被其他类继承.同样,也可以使用sealed关键字来阻止派生类重写虚成员.如,我们希望Horse的继承类不再具有扩展Voice方法的行为.(上一章链接:https: ...
- CX ONE 不能全屏
兼容性 win7 以管理员方式运行 1. 打开CX-Programmer,选择“工具”——“选项”:2. 点击“通用”选项卡,选择“高级”:3. 勾选“当下一次启动CX-Programmer时不显示 ...
- IO流学习
1,流是一组有顺序的,有起点和重点的字节集合,是对数据传输的总称和抽象.即数据在两个设备之间的传输称作流.流的本质就是数据传输,根据数据传输的特性,将流抽象为各种累,方便直观的进行数据操作. 2,根据 ...