1 # -*- coding:utf-8 -*-
2 '''
3 抓取豆瓣电影某部电影的评论
4抓取电影
5 网址链接:https://movie.douban.com/subject/26630781/comments
6 为了抓取全部评论需要先进行登录
7 '''
8 from selenium import webdriver
9 import time
10 import codecs
11 import jieba
12 import jieba.analyse as analyse
13 from wordcloud import WordCloud
14 from scipy.misc import imread
15 from os import path
16
17 def get_douban_comments(url):
18 comments_list = [] # 评论列表
19 login_url = 'https://accounts.douban.com/login?source=movie'
20 user_name = '1111111' # 这里替换成你的豆瓣用户名
21 password = '11111111' # 这里替换成你的密码
22 driver = webdriver.Firefox() # 启动Firefox()
23 driver.get(login_url)
24 driver.find_element_by_id('email').clear() # 清除输入框
25 driver.find_element_by_id('email').send_keys(user_name) # 输入用户名
26 driver.find_element_by_id('password').clear()
27 driver.find_element_by_id('password').send_keys(password) # 输入密码
28 captcha_field = raw_input('请打开浏览器输入验证码:') # 手动填入验证码
29 driver.find_element_by_id('captcha_field').send_keys(captcha_field)
30 driver.find_element_by_class_name('btn-submit').click() # 点击登录按钮
31 time.sleep(5) # 等待跳转到登录之后的页面
32 driver.get(url) # 定位到目标页面
33 driver.implicitly_wait(3) # 智能等待3秒
34 n = 501 # 页数
35 count = 10000 # 评论数目
36 while True:
37 try:
38 results = driver.find_elements_by_class_name('comment')
39 for result in results:
40 # author = result.find_elements_by_tag_name('a')[1].text # 作者
41 # vote = result.find_element_by_class_name('comment-vote').find_element_by_tag_name('span').text # 赞同数目
42 # time0 = result.find_element_by_class_name('comment-info').find_elements_by_tag_name('span')[1].text # 时间
43 comment = result.find_element_by_tag_name('p').text # 评论内容
44 comments_list.append(comment+u'\n')
45 print u"查找到第%d个评论" % count
46 count += 1
47 driver.find_element_by_class_name('next').click() # 点击下一页
48 print u'第%d页查找完毕!' % n
49 n += 1
50 time.sleep(4)
51 except Exception,e:
52 print e
53 break
54 with codecs.open('pjl_comment.txt','a',encoding='utf-8') as f:
55 f.writelines(comments_list)
56 print u"查找到第%d页,第%d个评论!" %(n,count)
57
58 # 得到所有关键词
59 def get_all_keywords(file_name):
60 word_lists = [] # 关键词列表
61 with codecs.open(file_name,'r',encoding='utf-8') as f:
62 Lists = f.readlines() # 文本列表
63 for List in Lists:
64 cut_list = list(jieba.cut(List))
65 for word in cut_list:
66 word_lists.append(word)
67 word_lists_set = set(word_lists) # 去除重复元素
68 sort_count = []
69 word_lists_set = list(word_lists_set)
70 length = len(word_lists_set)
71 print u"共有%d个关键词" % length
72 k = 1
73 for w in word_lists_set:
74 sort_count.append(w+u':'+unicode(word_lists.count(w))+u"次\n")
75 print u"%d---" % k + w+u":"+unicode(word_lists.count(w))+ u"次"
76 k += 1
77 with codecs.open('count_word.txt','w',encoding='utf-8') as f:
78 f.writelines(sort_count)
79
80 def get_top_keywords(file_name):
81 top_word_lists = [] # 关键词列表
82 with codecs.open(file_name,'r',encoding='utf-8') as f:
83 texts = f.read() # 读取整个文件作为一个字符串
84 Result = analyse.textrank(texts,topK=20,withWeight=True,withFlag=True)
85 n = 1
86 for result in Result:
87 print u"%d:" % n ,
88 for C in result[0]: # result[0] 包含关键词和词性
89 print C,u" ",
90 print u"权重:"+ unicode(result[1]) # 关键词权重
91 n += 1
92
93 # 绘制词云
94 def draw_wordcloud():
95 with codecs.open('pjl_comment.txt',encoding='utf-8') as f:
96 comment_text = f.read()
97 cut_text = " ".join(jieba.cut(comment_text)) # 将jieba分词得到的关键词用空格连接成为字符串
98 d = path.dirname(__file__) # 当前文件文件夹所在目录
99 color_mask = imread("F:/python2.7work/wordcloud/alice_color.png") # 读取背景图片
100 cloud = WordCloud(font_path=path.join(d,'simsun.ttc'),background_color='white',mask=color_mask,max_words=2000,max_font_size=40)
101 word_cloud = cloud.generate(cut_text) # 产生词云
102 word_cloud.to_file("pjl_cloud.jpg")
103
104
105
106 if __name__ == '__main__':
107 '''
108 url = 'https://movie.douban.com/subject/26630781/comments?start=10581&limit=20&sort=new_score'
109 get_douban_comments(url)
110 file_name = 'pjl_comment.txt'
111 get_top_keywords(file_name)
112 '''
113 draw_wordcloud()
- CVPR2018关键字分析生成词云图与查找
今日目标:爬取CVPR2018论文,进行分析总结出提到最多的关键字,生成wordCloud词云图展示,并且设置点击后出现对应的论文以及链接 对任务进行分解: ①爬取CVPR2018的标题,简介,关键字 ...
- 谁说程序员不浪漫?Python导出微信聊天记录生成爱的词云图
明天又双叒叕是一年一度的七夕恋爱节了! 又是一波绝好的机会!恩爱秀起来! 购物车清空!礼物送起来!朋友圈晒起来! 等等! 什么?! 你还没准备好七夕礼物么? 但其实你不知道要送啥? 原来又双叒叕要 ...
- python爬虫+词云图,爬取网易云音乐评论
又到了清明时节,用python爬取了网易云音乐<清明雨上>的评论,统计词频和绘制词云图,记录过程中遇到一些问题 爬取网易云音乐的评论 一开始是按照常规思路,分析网页ajax的传参情况.看到 ...
- 特朗普退出《巴黎协定》:python词云图舆情分析
1 前言 2017年6月1日,美国特朗普总统正式宣布美国退出<巴黎协定>.宣布退出<巴黎协定>后,特朗普似乎成了“全球公敌”. 特斯拉总裁马斯克宣布退出总统顾问团队 迪士尼董事 ...
- [超详细] Python3爬取豆瓣影评、去停用词、词云图、评论关键词绘图处理
爬取豆瓣电影<大侦探皮卡丘>的影评,并做词云图和关键词绘图第一步:找到评论的网页url.https://movie.douban.com/subject/26835471/comments ...
- 【爬虫+情感判定+Top10高频词+词云图】“谷爱凌”热门弹幕python舆情分析
一.背景介绍 最近几天,谷爱凌在冬奥会赛场上夺得一枚宝贵的金牌,为中国队贡献了自己的荣誉! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众网友弹幕的舆论导向,下面 ...
- 【爬虫+情感判定+Top10高频词+词云图】“刘畊宏“热门弹幕python舆情分析
一.背景介绍 最近一段时间,刘畊宏真是火出了天际,引起一股全民健身的热潮,毕竟锻炼身体,是个好事! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论 ...
- 【爬虫+情感判定+Top10高频词+词云图】"王心凌"热门弹幕python舆情分析
目录 一.背景介绍 二.代码讲解-爬虫部分 2.1 分析弹幕接口 2.2 讲解爬虫代码 三.代码讲解-情感分析部分 3.1 整体思路 3.2 情感分析打标 3.3 统计top10高频词 3.4 绘制词 ...
- python 数据分析--词云图,图形可视化美国竞选辩论
这篇博客从用python实现分析数据的一个完整过程.以下着重几个python的moudle的运用"pandas",""wordcloud"," ...
随机推荐
- 函数第二部分:为什么说动态参数是没有计划好的参数-Python基础前传(11)
动态参数1-一个星号变元组 动态参数存在的意义? 函数的作者有时候也不知道这个函数到底需要多少个参数,这时候动态参数就有存在的意义了 动态参数创建-加* 底层原理是:把数值型或其他数据类型变成了元组类 ...
- Spring Cloud Gateway(六):路由谓词工厂 RoutePredicateFactory
本文基于 spring cloud gateway 2.0.1 1.简介 Spring Cloud Gateway 创建 Route 对象时, 使用 RoutePredicateFactory 创建 ...
- Nginx之web服务器
Nginx的介绍 Nginx是由俄罗斯的Igor Sysoev使用C语言开发的轻量级.高性能.开源.跨平台的Web服务器. Nginx使用基于事件驱动的架构能够并发处理百万级的TCP连接,高模块化的设 ...
- Linux信号使用及自定义信号
linux自定义信号:https://www.cnblogs.com/bigben0123/p/3186661.html linux信号.值及解释:https://blog.csdn.net/luot ...
- .prop() vs .attr()
.prop() vs .attr() Update 1 November 2012 My original answer applies specifically to jQuery 1.6. My ...
- Eclipse自动生成作者、日期注释等功能设置 (转载)
原文地址:http://blog.sina.com.cn/s/blog_4080505a0101guoh.html 在使用Eclipse 编写Java代码时,自动生成的注释信息都是按照预先设置好的格式 ...
- poj2456
Aggressive cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24979 Accepted: 11594 ...
- IO流概述
作用: 处理设备之间的数据传输的 I: Input(输入) , O: Output(输出) 什么是输入和输出? 我们说输入和输出问题是站在内存的角度而言 , 如果我们程序读取硬盘上的数据那么就是输入 ...
- python读取csv文件、excel文件并封装成dict类型的list,直接看代码
# coding=UTF-8import csvimport xlrd class ReaderFile(): """ 读取csv文件 filePath:文件路径 &qu ...
- Python3 中codecs进行文件的读取
简单的概念与说明 编码(动词):按照某种规则(这个规则称为:编码(名词))将"文本"转换为"字节流".而在python 3中则表示:unicode变成str 解 ...