POJ 1837 -- Balance

转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345

提示:动态规划,01背包

初看此题第一个冲动就是穷举。。。。不过再细想肯定行不通= =O(20^20)等着超时吧。。。

我也是看了前辈的意见才联想到01背包,用动态规划来解

题目大意:

有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。

其中可以把天枰看做一个以x轴0点作为平衡点的横轴

输入:

2 4 //C 钩子数 与 G钩码数

-2 3 //负数:左边的钩子距离天平中央的距离;正数:右边的钩子距离天平中央的距离c[k]

3 4 5 8 //G个重物的质量w[i]

dp思路:

每向天平中方一个重物,天平的状态就会改变,而这个状态可以由若干前一状态获得。

首先定义一个平衡度j的概念

当平衡度j=0时,说明天枰达到平衡,j>0,说明天枰倾向右边(x轴右半轴),j<0则相反

那么此时可以把平衡度j看做为衡量当前天枰状态的一个值

因此可以定义一个 状态数组dp[i][j],意为在挂满前i个钩码时,平衡度为j的挂法的数量。

由于距离c[i]的范围是-15~15,钩码重量的范围是1~25,钩码数量最大是20

因此最极端的平衡度是所有物体都挂在最远端,因此平衡度最大值为j=15*20*25=7500。原则上就应该有dp[ 1~20 ][-7500 ~ 7500 ]。

因此为了不让下标出现负数,做一个处理,使使得数组开为 dp[1~20][0~15000],则当j=7500时天枰为平衡状态

那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的 力臂

力臂=重量 *臂长 = w[i]*c[k]

那么若在挂上第i个砝码之前,天枰的平衡度为j

(换言之把前i-1个钩码全部挂上天枰后,天枰的平衡度为j)

则挂上第i个钩码后,即把前i个钩码全部挂上天枰后,天枰的平衡度 j=j+ w[i]*c[k]

其中c[k]为天枰上钩子的位置,代表第i个钩码挂在不同位置会产生不同的平衡度

不难想到,假设 dp[i-1][j] 的值已知,设dp[i-1][j]=num

(即已知把前i-1个钩码全部挂上天枰后得到状态j的方法有num次)

那么dp[i][ j+ w[i]*c[k] ] = dp[i-1][j] = num

(即以此为前提,在第k个钩子挂上第i个钩码后,得到状态j+ w[i]*c[k]的方法也为num次)

想到这里,利用递归思想,不难得出 状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

有些前辈推导方式稍微有点不同,得到的 状态方程为dp[i][j] =∑(dp[i - 1][j - c[i] * w[i]])

其实两条方程是等价的,这个可以简单验证出来,而且若首先推导到第二条方程,也必须转化为第一条方程,这是为了避免下标出现负数

结论:

最终转化为01背包问题

状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

初始化:dp[0][7500] = 1;   //不挂任何重物时天枰平衡,此为一个方法

复杂度O(C*G*15000)  完全可以接受

 #include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxc = *** + ;
int dp[][maxc];
///dp[i][j]当第i个砝码挂上后,平衡度为j的挂法数量
///dp[G][0]为答案
int X[];
int main()
{ int C,G;//C为钩盘数,G为砝码数
while(cin>>C>>G){
for(int i=;i<=C;i++)///输入每个钩盘距离0的位置
cin>>X[i];
int weight; memset(dp,,sizeof(dp));
dp[][] = ;//7500为天枰达到平衡状态时的平衡度
//放入前0个物品后,天枰达到平衡状态7500的方法有1个,就是不挂钩码
for(int i=;i<=G;i++)
{
cin>>weight;
for(int j=;j<=;j++)
{
if(dp[i-][j])
for(int k = ;k<=C;k++)
dp[i][j+weight*X[k]] += dp[i-][j];
}
}
cout<<dp[G][]<<endl;
}
return ;
}

下列代码,提示,要注意循环结构的次序

 #include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxc = *** + ;
int dp[][maxc];
///dp[i][j]当第i个砝码挂上后,平衡度为j的挂法数量
///dp[G][0]为答案
int X[];
int main()
{ int C,G;//C为钩盘数,G为砝码数
while(cin>>C>>G){
for(int i=;i<=C;i++)///输入每个钩盘距离0的位置
cin>>X[i];
int weight; memset(dp,,sizeof(dp));
dp[][] = ;//7500为天枰达到平衡状态时的平衡度
//放入前0个物品后,天枰达到平衡状态7500的方法有1个,就是不挂钩码
for(int i=;i<=G;i++)
{
cin>>weight;
for(int k = ;k<=C;k++)
{
for(int j=;j<=;j++)
{
if(dp[i-][j])
dp[i][j+weight*X[k]] += dp[i-][j];
}
} }
cout<<dp[G][]<<endl;
}
return ;
}

POJ 1837 -- Balance(DP)的更多相关文章

  1. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  2. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  3. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  4. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

  5. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  6. POJ 1837 Balance 【DP】

    题意:给出一个天平,给出c个钩子,及c个钩子的位置pos[i],给出g个砝码,g个砝码的质量w[i],问当挂上所有的砝码的时候,使得天平平衡的方案数, 用dp[i][j]表示挂了前i个砝码时,平衡点为 ...

  7. POJ 1837 Balance

    Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...

  8. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

  9. poj 1837 Balance 动态规划 (经典好题,很锻炼思维)

    题目大意:给你一个天平,并给出m个刻度,n个砝码,刻度的绝对值代表距离平衡点的位置,并给出每个砝码的重量.达到平衡状态的方法有几种. 题目思路:首先我们先要明确dp数组的作用,dp[i][j]中,i为 ...

随机推荐

  1. 使用pymysql进行定时查询数据不更新的原因及解决方式

    用python写了一个小脚本定时查询数据库,输出查询结果并写入文件,发现每次查询的结果都是相同的,但是数据库确实在更新数据. 原因: REPEATABLE READ The default isola ...

  2. Am335x SD卡刷eMMC二

    犹豫前段时间一直在搞另一个项目,Am335x这个BBlack板就放置一边了.前几天把BBlack板重新拿到手,之前搞得给全忘了.SD卡烧写emmC时突然出现了错误,一直找不到原因,今天终于算是有点眉目 ...

  3. JAVA中AES对称加密和解密以及与Python兼容

    引言:本文主要解决Java中用AES加密及解密,同时可通过Python脚本对Java加密后的字符进行解密的操作. 由于近期工作中用到需要使用Java对一串密钥进行加密,并且后台通过Python语言读取 ...

  4. LintCode上的一道算法面试题: 数字的统计

    说到数字的统计,小时候的数学课大家都应该有学过,但数字太多太复杂的,手动肯定耗时间不说还很容易出错.所以今天分享一下如何用程序来完成. Have you met this question in a ...

  5. web开发:jquery初级

    一.JQ入门 二.引入JQ 三.页面加载 四.分析JQ源码流程 五.JQ操作 六.c菜单栏案例 一.JQ入门 what is jQuery ???1.jQuery是对原生JavaScript二次封装的 ...

  6. H2数据库启动提示8082端口被占用

    The Web Console server could not be started. Possible cause: another server is already running at ht ...

  7. Python Flask学习笔记(1)

    1.搭建虚拟环境 a. 安装 virtualenv : pip3 install virtualenv b. 建立虚拟环境 : 任意目录下建立一个空文件(我的是 Py_WorkSpace) ,在该文件 ...

  8. zencart价格筛选插件

    1.首先,新建文件includes\modules\sideboxes\price_range.php <?php function zen_count_products_in_price($p ...

  9. python pip 出现locations that require TLS/SSL异常处理方法

    python pip 出现locations that require TLS/SSL异常处理方法 转载 郑才华 发布于2018-03-24 21:41:16 阅读数 51844 收藏 展开 最近在r ...

  10. MySQL 下载与安装使用教程

    MySQL 官网地址:https://www.mysql.com/ 等待下载完成 双击运行 如果有需要 我们可以新增一个用户出来 点击 Add User,不需要的话 直接 点击 next 默认的MyS ...