POJ 1837 -- Balance

转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345

提示:动态规划,01背包

初看此题第一个冲动就是穷举。。。。不过再细想肯定行不通= =O(20^20)等着超时吧。。。

我也是看了前辈的意见才联想到01背包,用动态规划来解

题目大意:

有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。

其中可以把天枰看做一个以x轴0点作为平衡点的横轴

输入:

2 4 //C 钩子数 与 G钩码数

-2 3 //负数:左边的钩子距离天平中央的距离;正数:右边的钩子距离天平中央的距离c[k]

3 4 5 8 //G个重物的质量w[i]

dp思路:

每向天平中方一个重物,天平的状态就会改变,而这个状态可以由若干前一状态获得。

首先定义一个平衡度j的概念

当平衡度j=0时,说明天枰达到平衡,j>0,说明天枰倾向右边(x轴右半轴),j<0则相反

那么此时可以把平衡度j看做为衡量当前天枰状态的一个值

因此可以定义一个 状态数组dp[i][j],意为在挂满前i个钩码时,平衡度为j的挂法的数量。

由于距离c[i]的范围是-15~15,钩码重量的范围是1~25,钩码数量最大是20

因此最极端的平衡度是所有物体都挂在最远端,因此平衡度最大值为j=15*20*25=7500。原则上就应该有dp[ 1~20 ][-7500 ~ 7500 ]。

因此为了不让下标出现负数,做一个处理,使使得数组开为 dp[1~20][0~15000],则当j=7500时天枰为平衡状态

那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的 力臂

力臂=重量 *臂长 = w[i]*c[k]

那么若在挂上第i个砝码之前,天枰的平衡度为j

(换言之把前i-1个钩码全部挂上天枰后,天枰的平衡度为j)

则挂上第i个钩码后,即把前i个钩码全部挂上天枰后,天枰的平衡度 j=j+ w[i]*c[k]

其中c[k]为天枰上钩子的位置,代表第i个钩码挂在不同位置会产生不同的平衡度

不难想到,假设 dp[i-1][j] 的值已知,设dp[i-1][j]=num

(即已知把前i-1个钩码全部挂上天枰后得到状态j的方法有num次)

那么dp[i][ j+ w[i]*c[k] ] = dp[i-1][j] = num

(即以此为前提,在第k个钩子挂上第i个钩码后,得到状态j+ w[i]*c[k]的方法也为num次)

想到这里,利用递归思想,不难得出 状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

有些前辈推导方式稍微有点不同,得到的 状态方程为dp[i][j] =∑(dp[i - 1][j - c[i] * w[i]])

其实两条方程是等价的,这个可以简单验证出来,而且若首先推导到第二条方程,也必须转化为第一条方程,这是为了避免下标出现负数

结论:

最终转化为01背包问题

状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

初始化:dp[0][7500] = 1;   //不挂任何重物时天枰平衡,此为一个方法

复杂度O(C*G*15000)  完全可以接受

 #include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxc = *** + ;
int dp[][maxc];
///dp[i][j]当第i个砝码挂上后,平衡度为j的挂法数量
///dp[G][0]为答案
int X[];
int main()
{ int C,G;//C为钩盘数,G为砝码数
while(cin>>C>>G){
for(int i=;i<=C;i++)///输入每个钩盘距离0的位置
cin>>X[i];
int weight; memset(dp,,sizeof(dp));
dp[][] = ;//7500为天枰达到平衡状态时的平衡度
//放入前0个物品后,天枰达到平衡状态7500的方法有1个,就是不挂钩码
for(int i=;i<=G;i++)
{
cin>>weight;
for(int j=;j<=;j++)
{
if(dp[i-][j])
for(int k = ;k<=C;k++)
dp[i][j+weight*X[k]] += dp[i-][j];
}
}
cout<<dp[G][]<<endl;
}
return ;
}

下列代码,提示,要注意循环结构的次序

 #include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxc = *** + ;
int dp[][maxc];
///dp[i][j]当第i个砝码挂上后,平衡度为j的挂法数量
///dp[G][0]为答案
int X[];
int main()
{ int C,G;//C为钩盘数,G为砝码数
while(cin>>C>>G){
for(int i=;i<=C;i++)///输入每个钩盘距离0的位置
cin>>X[i];
int weight; memset(dp,,sizeof(dp));
dp[][] = ;//7500为天枰达到平衡状态时的平衡度
//放入前0个物品后,天枰达到平衡状态7500的方法有1个,就是不挂钩码
for(int i=;i<=G;i++)
{
cin>>weight;
for(int k = ;k<=C;k++)
{
for(int j=;j<=;j++)
{
if(dp[i-][j])
dp[i][j+weight*X[k]] += dp[i-][j];
}
} }
cout<<dp[G][]<<endl;
}
return ;
}

POJ 1837 -- Balance(DP)的更多相关文章

  1. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  2. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  3. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  4. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

  5. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  6. POJ 1837 Balance 【DP】

    题意:给出一个天平,给出c个钩子,及c个钩子的位置pos[i],给出g个砝码,g个砝码的质量w[i],问当挂上所有的砝码的时候,使得天平平衡的方案数, 用dp[i][j]表示挂了前i个砝码时,平衡点为 ...

  7. POJ 1837 Balance

    Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...

  8. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

  9. poj 1837 Balance 动态规划 (经典好题,很锻炼思维)

    题目大意:给你一个天平,并给出m个刻度,n个砝码,刻度的绝对值代表距离平衡点的位置,并给出每个砝码的重量.达到平衡状态的方法有几种. 题目思路:首先我们先要明确dp数组的作用,dp[i][j]中,i为 ...

随机推荐

  1. ASE19团队项目alpha阶段model组 scrum8 记录

    本次会议于11月12日,19时整在微软北京西二号楼sky garden召开,持续15分钟. 与会人员:Jiyan He, Kun Yan, Lei Chai, Linfeng Qi, Xueqing ...

  2. python 中startswith()和endswith() 方法

    startswith()方法 Python startswith() 方法用于检查字符串是否是以指定子字符串开头如果是则返回 True,否则返回 False.如果参数 beg 和 end 指定值,则在 ...

  3. 微信小程序双向绑定

    欢迎加入前端交流群交流知识获取视频资料:749539640 vue.angular的双向绑定如下示例: <div> <input type="text" [(ng ...

  4. php连接oracle oracle开启扩展

    <?php /** * 由于公司的需要,使用php+oracle开发项目,oracle因为有专门人员开发设计,我们只需远程调用 *于是乎遇到了蛋疼的问题就是开启oracle扩展的问题,虽然你在p ...

  5. 蓝桥杯BASIC-13 数列排序

    问题描述 给定一个长度为n的数列,将这个数列按从小到大的顺序排列.1<=n<=200 输入格式 第一行为一个整数n. 第二行包含n个整数,为待排序的数,每个整数的绝对值小于10000. 输 ...

  6. Pycharm中查看内置函数的源码

    方法1.鼠标放在函数上,Ctrl+B,看源码 方法2.将光标移动至要查看的方法处,按住ctrl 键,点击鼠标左键,即可查看该方法的源码.

  7. 如何处理请求返回的二进制数据流转化成xlsx文件?

    /* fileName : 文件名 res:二进制流 */ function getOutExcel(fileName, res) { let blob = new Blob([res], { typ ...

  8. 鼠标点击自定义文字展现特效JS代码

    JS特效使用方法 只需将如下JS代码放到</body>之前就好了 var a_idx = 0; jQuery(document).ready(function($) { $("b ...

  9. Cow Hopscotch (单调队列 + DP)

    链接:https://ac.nowcoder.com/acm/contest/1113/K来源:牛客网 The cows have reverted to their childhood and ar ...

  10. springboot项目下载文件功能中-切面-导致的下载文件失败的bug

    背景:使用spring提供的 ResponseEntity 和Resource结合,实现的下载文件功能 bug:Resource已经加载到了文件, 并且通过 ResponseEntity 构建了响应, ...