[bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp
[Usaco2015 Jan]Grass Cownoisseur
题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)
数据范围:$1\le n, m\le 10^5$。
题解:
先$tarjan$缩强连通分量,因为每一个$SCC$只要能到一个点就能到整个$SCC$。
接下来我们发现,我们操作的边的两个端点会满足如下性质:
这条有向边的起点可以到$1$号点所在$SCC$。
这条有向边的重点可以被$1$号点所在$SCC$到达。
故此,我们再缩完点之后,先对原图弄一遍拓扑序$DP$,求出$1$号点所在$SCC$到每个点的最长路。
再建反边重新跑拓扑序$DP$,求出每个点到$1$号点所在$SCC$的最长路。
暴力枚举边更新即可。
代码:
#include <bits/stdc++.h>
#define N 100010
using namespace std;
int dep[N], low[N], st[N], top, cnt, blg[N], sz[N], f1[N], f2[N], d1[N], d2[N];
int Number;
bool ins[N];
struct Node {
int x, y;
}e[N];
struct Edge {
int head[N], to[N << 1], nxt[N << 1], tot;
inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
}
}G1,G2,G3;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
void tarjan(int p) {
st[ ++ top] = p;
ins[p] = true;
low[p] = dep[p] = ++cnt;
for (int i = G1.head[p]; i; i = G1.nxt[i]) {
if (!dep[G1.to[i]])
tarjan(G1.to[i]), low[p] = min(low[p], low[G1.to[i]]);
else if (ins[G1.to[i]])
low[p] = min(low[p], dep[G1.to[i]]);
}
if (dep[p] == low[p]) {
int t;
Number ++ ;
do {
t = st[top -- ];
ins[t] = false;
blg[t] = Number;
sz[Number] ++ ;
} while(t != p);
}
}
queue<int> q;
void dp1() {
while (!q.empty()) {
q.pop();
}
memset(f1, 0xef, sizeof f1);
for (int i = 1; i <= Number; i ++ ) {
if (!d1[i]) {
q.push(i);
}
}
f1[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f1[x] += sz[x];
for (int i = G2.head[x]; i; i = G2.nxt[i]) {
f1[G2.to[i]] = max(f1[G2.to[i]], f1[x]);
d1[G2.to[i]] -- ;
if (!d1[G2.to[i]]) {
q.push(G2.to[i]);
}
}
}
}
void dp2() {
while (!q.empty()) {
q.pop();
}
for (int i = 1; i <= Number; i ++ ) {
if (!d2[i]) {
q.push(i);
}
}
memset(f2, 0xef, sizeof f2);
f2[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f2[x] += sz[x];
for (int i = G3.head[x]; i; i = G3.nxt[i]) {
f2[G3.to[i]] = max(f2[G3.to[i]], f2[x]);
d2[G3.to[i]] -- ;
if (!d2[G3.to[i]]) {
q.push(G3.to[i]);
}
}
}
}
int main() {
int n = rd(), m = rd();
if (!n)
puts("1"), exit(0);
for (int i = 1; i <= m; i ++ ) {
e[i].x = rd(), e[i].y = rd();
G1.add(e[i].x, e[i].y);
}
for (int i = 1; i <= n; i ++ ) {
if (!dep[i]) {
tarjan(i);
}
}
// for (int i = 1; i <= n; i ++ ) {
// printf("%d ",blg[i]);
// }
// puts("");
for (int i = 1; i <= m; i ++ ) {
e[i].x = blg[e[i].x];
e[i].y = blg[e[i].y];
if (e[i].x != e[i].y) {
// printf("%d %d\n", e[i].x, e[i].y);
G2.add(e[i].x, e[i].y);
d1[e[i].y] ++ ;
G3.add(e[i].y, e[i].x);
d2[e[i].x] ++ ;
}
}
dp1();
dp2();
// for (int i = 1; i <= Number; i ++ ) {
// printf("%d %d\n", f1[i], f2[i]);
// }
int ans = sz[blg[1]];
for (int i = 1; i <= m; i ++ ) {
if (e[i].x != e[i].y) {
ans = max(ans, f1[e[i].y] + f2[e[i].x] - sz[blg[1]]);
}
}
cout << ans << endl ;
return 0;
}
小结:比较好想的一道题,需要注意的是两边拓扑序$dp$需要清队列。
[bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp的更多相关文章
- BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*
BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...
- bzoj3887: [Usaco2015 Jan]Grass Cownoisseur
题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...
- BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]
首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- [补档][Usaco2015 Jan]Grass Cownoisseur
[Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...
- BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)
分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...
- Codeforces 919D Substring ( 拓扑排序 && DAG上的DP )
题意 : 给出含有 N 个点 M 条边的图(可能不连通或者包含环),每个点都标有一个小写字母编号,然后问你有没有一条路径使得路径上重复字母个数最多的次数是多少次,例如图上有条路径的顶点标号顺序是 a ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA
考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...
随机推荐
- CSS实现太极效果
这个伪元素的位置对齐还妹搞明白 需要再研究研究 <html> <head> <title>taiji</title> <style> b ...
- Navicat创建数据库或导入数据库
双击点亮数据库 导入数据库 点击开始
- struts2 404错误
action类必须放在xxxx.xxx.xxx.xxx.action 包下才可以.
- pat 甲级 1034 ( Head of a Gang )
1034 Head of a Gang (30 分) One way that the police finds the head of a gang is to check people's pho ...
- 【luoguP4124 】[CQOI2016]手机号码
题目描述 人们选择手机号码时都希望号码好记.吉利.比如号码中含有几位相邻的相同数字.不含谐音不吉利的数字等.手机运营商在发行新号码时也会考虑这些因素,从号段中选取含有某些特征的号码单独出售.为了便于前 ...
- 【CUDA 基础】6.2 并发内核执行
title: [CUDA 基础]6.2 并发内核执行 categories: - CUDA - Freshman tags: - 流 - 事件 - 深度优先 - 广度优先 - 硬件工作队列 - 默认流 ...
- 利用简单的有限状态机(FSM)来实现一个简单的LED流水灯
有限状态机,(英语:Finite-state machine, FSM),又称有限状态自动机,简称状态机,是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型. 有限状态机是指输出取决于过去 ...
- 2018-2019-2 20165330《网络对抗技术》Exp8 Web基础
目录 基础问题 相关知识 实验内容 实验步骤 实验总结与体会 实验内容 Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML ...
- linux中wget未找到命令
(转)linux中wget未找到命令 转:https://blog.csdn.net/djj_alice/article/details/80407769 在装数据库的时候发现无法使用wget命令 ...
- LightGBM新特性总结
LightGBM提出两种新方法:Gradient-based One-Side Sampling (GOSS) 和Exclusive Feature Bundling (EFB)(基于梯度的one-s ...