[bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp
[Usaco2015 Jan]Grass Cownoisseur
题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)
数据范围:$1\le n, m\le 10^5$。
题解:
先$tarjan$缩强连通分量,因为每一个$SCC$只要能到一个点就能到整个$SCC$。
接下来我们发现,我们操作的边的两个端点会满足如下性质:
这条有向边的起点可以到$1$号点所在$SCC$。
这条有向边的重点可以被$1$号点所在$SCC$到达。
故此,我们再缩完点之后,先对原图弄一遍拓扑序$DP$,求出$1$号点所在$SCC$到每个点的最长路。
再建反边重新跑拓扑序$DP$,求出每个点到$1$号点所在$SCC$的最长路。
暴力枚举边更新即可。
代码:
#include <bits/stdc++.h>
#define N 100010
using namespace std;
int dep[N], low[N], st[N], top, cnt, blg[N], sz[N], f1[N], f2[N], d1[N], d2[N];
int Number;
bool ins[N];
struct Node {
int x, y;
}e[N];
struct Edge {
int head[N], to[N << 1], nxt[N << 1], tot;
inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
}
}G1,G2,G3;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
void tarjan(int p) {
st[ ++ top] = p;
ins[p] = true;
low[p] = dep[p] = ++cnt;
for (int i = G1.head[p]; i; i = G1.nxt[i]) {
if (!dep[G1.to[i]])
tarjan(G1.to[i]), low[p] = min(low[p], low[G1.to[i]]);
else if (ins[G1.to[i]])
low[p] = min(low[p], dep[G1.to[i]]);
}
if (dep[p] == low[p]) {
int t;
Number ++ ;
do {
t = st[top -- ];
ins[t] = false;
blg[t] = Number;
sz[Number] ++ ;
} while(t != p);
}
}
queue<int> q;
void dp1() {
while (!q.empty()) {
q.pop();
}
memset(f1, 0xef, sizeof f1);
for (int i = 1; i <= Number; i ++ ) {
if (!d1[i]) {
q.push(i);
}
}
f1[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f1[x] += sz[x];
for (int i = G2.head[x]; i; i = G2.nxt[i]) {
f1[G2.to[i]] = max(f1[G2.to[i]], f1[x]);
d1[G2.to[i]] -- ;
if (!d1[G2.to[i]]) {
q.push(G2.to[i]);
}
}
}
}
void dp2() {
while (!q.empty()) {
q.pop();
}
for (int i = 1; i <= Number; i ++ ) {
if (!d2[i]) {
q.push(i);
}
}
memset(f2, 0xef, sizeof f2);
f2[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f2[x] += sz[x];
for (int i = G3.head[x]; i; i = G3.nxt[i]) {
f2[G3.to[i]] = max(f2[G3.to[i]], f2[x]);
d2[G3.to[i]] -- ;
if (!d2[G3.to[i]]) {
q.push(G3.to[i]);
}
}
}
}
int main() {
int n = rd(), m = rd();
if (!n)
puts("1"), exit(0);
for (int i = 1; i <= m; i ++ ) {
e[i].x = rd(), e[i].y = rd();
G1.add(e[i].x, e[i].y);
}
for (int i = 1; i <= n; i ++ ) {
if (!dep[i]) {
tarjan(i);
}
}
// for (int i = 1; i <= n; i ++ ) {
// printf("%d ",blg[i]);
// }
// puts("");
for (int i = 1; i <= m; i ++ ) {
e[i].x = blg[e[i].x];
e[i].y = blg[e[i].y];
if (e[i].x != e[i].y) {
// printf("%d %d\n", e[i].x, e[i].y);
G2.add(e[i].x, e[i].y);
d1[e[i].y] ++ ;
G3.add(e[i].y, e[i].x);
d2[e[i].x] ++ ;
}
}
dp1();
dp2();
// for (int i = 1; i <= Number; i ++ ) {
// printf("%d %d\n", f1[i], f2[i]);
// }
int ans = sz[blg[1]];
for (int i = 1; i <= m; i ++ ) {
if (e[i].x != e[i].y) {
ans = max(ans, f1[e[i].y] + f2[e[i].x] - sz[blg[1]]);
}
}
cout << ans << endl ;
return 0;
}
小结:比较好想的一道题,需要注意的是两边拓扑序$dp$需要清队列。
[bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp的更多相关文章
- BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*
BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...
- bzoj3887: [Usaco2015 Jan]Grass Cownoisseur
题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...
- BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]
首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- [补档][Usaco2015 Jan]Grass Cownoisseur
[Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...
- BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)
分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...
- Codeforces 919D Substring ( 拓扑排序 && DAG上的DP )
题意 : 给出含有 N 个点 M 条边的图(可能不连通或者包含环),每个点都标有一个小写字母编号,然后问你有没有一条路径使得路径上重复字母个数最多的次数是多少次,例如图上有条路径的顶点标号顺序是 a ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA
考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...
随机推荐
- linux系统编程--守护进程,会话,进程组,终端
终端: 在UNIX系统中,用户通过终端登录系统后得到一个Shell进程,这个终端成为Shell进程的控制终端(Controlling Terminal), 进程中,控制终端是保存在PCB中的信息,而f ...
- 查看API工具 https://editor.swagger.io/
The base URL for the API is: https://api.cloud.nalantis.com/api/ The OpenAPI documentation is ava ...
- Django Admin中增加导出Excel功能
参考: https://www.cnblogs.com/yoyo008/p/9232805.html 在使用Django Admin时, 对于列表我们有时需要提供数据导出功能, 如下图: 在Djang ...
- shell 读取文本并访问mysql/redis
#!/bin/bash File="redeemcode.csv" #File=$ database="d_redeem_info" echo "ch ...
- mysql: error while loading shared libraries: libnuma.so
安装mysql后,执行初始化配置脚本,创建系统自带的数据库和表时报异常: [root@VM_0_12_centos mysql]# scripts/mysql_install_db --basedir ...
- dubbo中的group与version的存在意义
公司每周五都要给线上系统发布一个版本,我将本周新开发的业务模块直接提交到svn的主干上(当然本机已经测试通过),在公司的测试环境部署运行正常,测试人员业务测试通过.但是在部署到准生产环境上后出现了意想 ...
- 如何选CDN:互联网大直播时代的CDN选择指南
转: 如何选CDN:互联网大直播时代的CDN选择指南 from: http://www.chnvideo.com/blog-classic-cdn.html SRS 编码器 如何选CDN:互联网 ...
- idea svn 主干分支切换
使用快捷键ctrl+t或者点击工具栏中的 vcs update 出现如下窗口:点击复选框,在框2中进行选择你要切换的分支的地址,点击OK即可 : 查看是否切换成功可以再version control ...
- 演示Java如何调用Mysql的过程和函数
这里只演示Java如何调用Mysql的过程和函数 --------------------------------------------------------------------------- ...
- [Java复习] 并发 JUC
Q1:为什么非常高的并发请求下AtomicLong的性能会有很大影响?有没有什么更好的替代方案? 虽然AtomicLong使用CAS但是CAS失败后还是通过无限循环的自旋锁不断尝试的,在高并发下N多线 ...