P3205 [HNOI2010]合唱队[区间dp]
题目描述
为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:
-第一个人直接插入空的当前队形中。
-对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。
当N个人全部插入当前队形后便获得最终排出的队形。
例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750,
那么小A会按以下步骤获得最终排出的队形:
1850
- 1850 , 1900 因为 1900 > 1850
- 1700, 1850, 1900 因为 1700 < 1900
- 1650 . 1700, 1850, 1900 因为 1650 < 1700
- 1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
- 1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800
因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800
小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形
说明/提示
30%的数据:n<=100
100%的数据:n<=1000
解析
其实这道题是递推/记搜。
观察题目,容易归纳出每次取一个人加入队形时,他只可能加在队列的最左边或者最右边,满足区间dp的性质。
设\(dp[0/1][i][j]\)表示在区间\(i\sim j\)中最后放的人在最左/右时的方案数。
根据加法原理,容易写出状态转移方程:
]\\
dp[i][j][1] = dp[i][j − 1][0] · [h_j > h_i
] + dp[i][j - 1][1] · [h_j > h_{j−1}]
\]
自认为这题比较神奇的一点(我WA了好几次),是初始化,鬼知道为什么只用初始化一维(\(0/1\)那一维),而且无论你初始化哪一维答案都是一样的。
参考代码
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define mod 19650827
#define N 1010
using namespace std;
int dp[2][N][N],n,a[N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]),dp[0][i][i]=1;
for(int len=2;len<=n;++len)
for(int l=1;l<=n-len+1;++l){
int r=l+len-1;
// 0 left 1 right
int t1=0,t2=0,t3=0,t4=0;
if(a[l]<a[l+1]) t1=1;
if(a[l]<a[r]) t2=1;
if(a[r]>a[r-1]) t3=1;
if(a[r]>a[l]) t4=1;
dp[0][l][r]=(dp[0][l+1][r]*t1%mod+dp[1][l+1][r]*t2%mod)%mod;
dp[1][l][r]=(dp[1][l][r-1]*t3%mod+dp[0][l][r-1]*t4%mod)%mod;
}
printf("%d\n",((dp[0][1][n]%mod+dp[1][1][n])%mod)%mod);
return 0;
}
P3205 [HNOI2010]合唱队[区间dp]的更多相关文章
- [HNOI2010]合唱队 区间DP
---题面--- 题解: 偶然翻到这道题,,,就写了. 观察到一个数被插在哪里只受前一个数的影响,如果明确了前一个数是哪个,那么我们就可以确定大小关系,就可以知道当前这个数插在哪里,而上一个插入的数就 ...
- 洛谷 P3205 [HNOI2010]合唱队 解题报告
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- 洛谷——P3205 [HNOI2010]合唱队
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- 【BZOJ1996】【HNOI2010】合唱队 [区间DP]
合唱队 Time Limit: 4 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description Input Output Sample ...
- BZOJ1996:[HNOI2010]CHORUS 合唱队(区间DP)
Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 辣鸡guide真难用 ...
- [HNOI2010]CHORUS 合唱队 (区间DP)
题目描述 对于一个包含 NN 个整数的数列 AA ,我们可以把它的所有元素加入一个双头队列 BB . 首先 A1A1 作为队列的唯一元素,然后依次加入 A2∼ANA2∼AN ,如果 Ai<Ai− ...
- LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP
区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...
- [洛谷P3205] HNOI2010 合唱队
问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...
- 洛谷 P3205 [HNOI2010]合唱队
题目链接 题解 区间dp \(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\) \(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\) 然后就是普通区间dp转移 Code ...
随机推荐
- PHP与Cookie
不管什么语言写的cookie,本质上没区别. cookie 常用于识别用户.cookie 是服务器留在用户计算机中的小文件.每当相同的计算机通过浏览器请求页面时,它同时会发送 cookie.通过 PH ...
- python基础学习(十一)
22.类 # 类 class # 实例 实体 instance class Student: # 空语句 保持结构的完整性 pass jack = Student() jack.name = &quo ...
- java当中JDBC当中请给出一个DataSource的单态模式(SingleTon)HelloWorld例子
[学习笔记] 2.DataSource的单态模式(SingleTon)程序 咱们还接着上面的例子来说.1万个人要看书.千万确保要只建立一个图书馆.要是一不留神,建了两个或三个图书馆,那可就亏大发了.对 ...
- 使用Lombok总结
Lombok学习总结 Project Lombok is a java library that automatically plugs into your editor and build tool ...
- Python14之字符串(各种奇葩的内置方法)
一.字符串的分片操作 其分片操作和列表和元组一样 str1 = 'keshengtao' str1[2:6] 'shen' str1[:] 'keshengtao' str1[:4] 'kesh' 二 ...
- QT加载自带字体
#include <QCoreApplication> #include <QStringList> #include <QFontDatabase> #inclu ...
- C++ 中三种继承方式的理解
一.公有继承(public inheritance) 1.概念:当类的继承方式为公有继承时,基类的公有成员和保护成员的访问属性在派生类中不变,而基类的私有成员不可以直接访问. 实验一下: 我们用代 ...
- 资深程序员推荐必备书籍 《C语言程序设计》
当下,IT行业发展日趋迅猛,产值成倍增长,高薪的诱惑更是驱使许多人想要进入IT行业发展.为了使大家更全面理解C语言程序设计,由千锋教研院高教产品研发部编著.清华大学出版社倾情出版的<C语言程序设 ...
- 微软商店一直安装不上Intel Media SDK DFP
具体表现为一直安装失败,但是下载进度条一直在,无法去除. 此方法来自 https://answers.microsoft.com/en-us/windows/forum/all/error-code- ...
- 【exgcd】卡片
卡片 题目描述 你有一叠标号为1到n的卡片.你有一种操作,可以重排列这些卡片,操作如下:1.将卡片分为前半部分和后半部分.2.依次从后半部分,前半部分中各取一张卡片,放到新的序列中.例如,对卡片序列( ...