BZOJ 4316: 小C的独立集
4316: 小C的独立集
思路:先将树上的转移做好。然后环上的转移就是强制最上面的的点选或者不选,然后在环上跑一遍转移就可以了。
代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head
const int N = 6e4 + 10;
vector<int> g[N];
int n, m, u, v, dp[N][2], fa[N];
int low[N], dfn[N], cnt = 0;
inline void DP(int u, int v) {
int now0 = 0, now1 = 0;
for (int i = v; i != u; i = fa[i]) {
int t0 = now0 + dp[i][0];
int t1 = now1 + dp[i][1];
now0 = max(t0, t1);
now1 = t0;
}
dp[u][0] += now0;
now0 = 0, now1 = -10000000;
for (int i = v; i != u; i = fa[i]) {
int t0 = now0 + dp[i][0];
int t1 = now1 + dp[i][1];
now0 = max(t0, t1);
now1 = t0;
}
dp[u][1] += now1;
}
inline void tarjan(int u, int o) {
fa[u] = o;
dp[u][1] = 1;
dfn[u] = low[u] = ++cnt;
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if(v == o) continue;
if(!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else low[u] = min(low[u], dfn[v]);
if(low[v] > dfn[u]) {
dp[u][0] += max(dp[v][0], dp[v][1]);
dp[u][1] += dp[v][0];
}
}
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if(fa[v] != u && dfn[v] > dfn[u]) {
DP(u, v);
}
}
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; ++i) scanf("%d %d", &u, &v), g[u].pb(v), g[v].pb(u);
tarjan(1, 0);
printf("%d\n", max(dp[1][0], dp[1][1]));
return 0;
}
BZOJ 4316: 小C的独立集的更多相关文章
- BZOJ 4316: 小C的独立集 解题报告
4316: 小C的独立集 Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点, ...
- BZOJ 4316: 小C的独立集 仙人掌 + 树形DP
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- BZOJ.4316.小C的独立集(仙人掌 DP)
题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...
- bzoj 4316: 小C的独立集【仙人掌dp】
参考:https://www.cnblogs.com/clrs97/p/7518696.html 其实和圆方树没什么关系 设f[i][j][k]为i点选/不选,这个环的底选不选 这个底的定义是设u为这 ...
- 【BZOJ】4316: 小C的独立集 静态仙人掌
[题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
- 【BZOJ4316】小C的独立集(动态规划)
[BZOJ4316]小C的独立集(动态规划) 题面 BZOJ 题解 考虑树的独立集求法 设\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值 转移\(f[u][ ...
- 【BZOJ4316】小C的独立集(仙人掌,动态规划)
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...
随机推荐
- Python之可变参数,*参数,**参数,以及传入*参数,进行解包
1.定义了一个需要两个参数的函数 def print_str(first, second): print first print second if __name__ == "__main_ ...
- VSCode 代码格式化快捷键
转载自:http://geek-docs.com/vscode/vscode-tutorials/vscode-code-formatting.html VSCode 代码格式化快捷键,我们平常在做自 ...
- Python赋值、浅拷贝、深拷贝
一.赋值(assignment) >>> a = [1, 2, 3] >>> b = a >>> print(id(a), id(b), sep= ...
- crontab每小时运行一次
先给出crontab的语法格式 对于网上很多给出的每小时定时任务写法,可以说绝大多数都是错误的!比如对于下面的这种写法: 00 * * * * #每隔一小时执行一次 00 */1 * * * #与上面 ...
- oracle 常用sql 经典sql函数使用 sql语法
各种树操作, 用来查询表中带有子父节点的信息 Oracle 树操作(select-start with-connect by-prior) select m.org_id from sm_organ ...
- Python24之递归和迭代
一.递归的含义及一些用途 递归就是函数通过return语句实现自己调用自己的过程,基本上所有的程序语言都有递归算法,常有人说(’一般程序员使用迭代,天才程序员使用递归‘),汉诺塔游戏.谢尔宾斯基三角形 ...
- 剑指offer62:二叉搜索树的第k个结点,二叉搜索树【左边的元素小于根,右边的元素大于根】
1 题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 2 思路和方法 二叉搜索树[左边的元素小于根,右边 ...
- 剑指offer28:找出数组中超过一半的数字。
1 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出 ...
- TZOJ1299: 畅通工程
#include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> #i ...
- Android--DES加密
Base64.java import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.OutputS ...