BZOJ 4316: 小C的独立集
4316: 小C的独立集
思路:先将树上的转移做好。然后环上的转移就是强制最上面的的点选或者不选,然后在环上跑一遍转移就可以了。
代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head
const int N = 6e4 + 10;
vector<int> g[N];
int n, m, u, v, dp[N][2], fa[N];
int low[N], dfn[N], cnt = 0;
inline void DP(int u, int v) {
int now0 = 0, now1 = 0;
for (int i = v; i != u; i = fa[i]) {
int t0 = now0 + dp[i][0];
int t1 = now1 + dp[i][1];
now0 = max(t0, t1);
now1 = t0;
}
dp[u][0] += now0;
now0 = 0, now1 = -10000000;
for (int i = v; i != u; i = fa[i]) {
int t0 = now0 + dp[i][0];
int t1 = now1 + dp[i][1];
now0 = max(t0, t1);
now1 = t0;
}
dp[u][1] += now1;
}
inline void tarjan(int u, int o) {
fa[u] = o;
dp[u][1] = 1;
dfn[u] = low[u] = ++cnt;
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if(v == o) continue;
if(!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else low[u] = min(low[u], dfn[v]);
if(low[v] > dfn[u]) {
dp[u][0] += max(dp[v][0], dp[v][1]);
dp[u][1] += dp[v][0];
}
}
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if(fa[v] != u && dfn[v] > dfn[u]) {
DP(u, v);
}
}
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; ++i) scanf("%d %d", &u, &v), g[u].pb(v), g[v].pb(u);
tarjan(1, 0);
printf("%d\n", max(dp[1][0], dp[1][1]));
return 0;
}
BZOJ 4316: 小C的独立集的更多相关文章
- BZOJ 4316: 小C的独立集 解题报告
4316: 小C的独立集 Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点, ...
- BZOJ 4316: 小C的独立集 仙人掌 + 树形DP
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- BZOJ.4316.小C的独立集(仙人掌 DP)
题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...
- bzoj 4316: 小C的独立集【仙人掌dp】
参考:https://www.cnblogs.com/clrs97/p/7518696.html 其实和圆方树没什么关系 设f[i][j][k]为i点选/不选,这个环的底选不选 这个底的定义是设u为这 ...
- 【BZOJ】4316: 小C的独立集 静态仙人掌
[题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
- 【BZOJ4316】小C的独立集(动态规划)
[BZOJ4316]小C的独立集(动态规划) 题面 BZOJ 题解 考虑树的独立集求法 设\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值 转移\(f[u][ ...
- 【BZOJ4316】小C的独立集(仙人掌,动态规划)
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...
随机推荐
- FileZilla下载文件失败
之前一直可以下载文件,突然某天下载报错, 方法一:修改本地站点
- 利用卷积神经网络处理cifar图像分类
这是一个图像分类的比赛CIFAR( CIFAR-10 - Object Recognition in Images ) 首先我们需要下载数据文件,地址: http://www.cs.toronto.e ...
- Appium移动自动化测试-----(六)1.appium-desktop下载安装
Appium 移动测试中有个很重新的组件 Appium-Server,它主要用来监听我们的移动设备(真机或模拟器),然将不同编程语言编写的 appium 测试脚本进行解析,然后,驱动移动设备来运行测试 ...
- [转帖]HBase详解(很全面)
HBase详解(很全面) very long story 简单看了一遍 很多不明白的地方.. 2018-06-08 16:12:32 卢子墨 阅读数 34857更多 分类专栏: HBase [转自 ...
- Spring Boot 入门(九):集成Quartz定时任务
本片文章续<Spring Boot 入门(八):集成RabbitMQ消息队列>,关于Quartz定时任务请参考<Quartz的基本使用之入门(2.3.0版本)> spring ...
- Zuul【自定义Filter】
实际业务中,如果要自定义filter过滤器,只需集成ZuulFIlter类即可,该类是个抽象类,它实现了IZuulFIlter接口,我们需要实现几个方法,如下示例: import static org ...
- Struts笔记2
Struts2-配置文件result元素 作用:为动作指定结果视图 name属性:逻辑视图的名称,对应着动作方法的返回值.默认值是success type属性:结果类型,指的就是用什么方式转到定义的页 ...
- 剑指offer65:矩阵中的路径(二维数组,二分查找)
1 题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩 ...
- Django使用指南
一.安装Django 1.命令行安装 pip3 install django(默认安装最新稳定版本) pip3 install django==版本号(指定版本安装) 2.Pycharm安装 在Pyc ...
- 20 闭包、nonlocal
闭包的概念 闭包就是能够读取其他函数内部变量的函数. 从模块级别调用函数内部的局部变量. 闭包 = 函数+环境变量(函数外部的变量) 闭包存在的条件 闭包必须返回一个函数 被返回的函数必须调用环境变量 ...