树链剖分后线段树维护区间最大最小值与和. 支持单点修改与区间取反.

直接写个区间取反标记就行了.线段树板题.(200行6000B+ 1A警告)

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
inline void read(int &num) {
char ch; int flg=1; while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
for(num=0; isdigit(ch); num=num*10+ch-'0',ch=getchar()); num*=flg;
}
const int MAXN = 100005;
const int INF = 1e9; int n, m, cnt, tmr, bel[MAXN], a[MAXN], w[MAXN], fir[MAXN], fa[MAXN], dfn[MAXN], top[MAXN], sz[MAXN], son[MAXN], dep[MAXN];
struct edge { int to, nxt, w, id; }e[MAXN<<1];
inline void Add(int u, int v, int wt, int i) {
e[cnt] = (edge){ v, fir[u], wt, i }, fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], wt, i }, fir[v] = cnt++;
}
void dfs(int x) {
dep[x] = dep[fa[x]] + (sz[x]=1);
for(int v, i = fir[x]; ~i; i = e[i].nxt)
if((v=e[i].to) != fa[x]) {
fa[v] = x, a[v] = e[i].w;
bel[e[i].id] = v;
dfs(v), sz[x] += sz[v];
if(sz[v] > sz[son[x]]) son[x] = v;
}
}
void dfs2(int x, int tp) {
top[x] = tp; w[dfn[x] = ++tmr] = a[x];
if(son[x]) dfs2(son[x], tp);
for(int v, i = fir[x]; ~i; i = e[i].nxt)
if((v=e[i].to) != fa[x] && v != son[x])
dfs2(v, v);
} namespace SegmentTree {
int sum[MAXN<<2], mx[MAXN<<2], mn[MAXN<<2];
bool rev[MAXN<<2];
inline void update(int i) {
sum[i] = sum[i<<1] + sum[i<<1|1];
mx[i] = max(mx[i<<1], mx[i<<1|1]);
mn[i] = min(mn[i<<1], mn[i<<1|1]);
}
inline void pushdown(int i) {
if(rev[i]) {
rev[i] ^= 1, rev[i<<1] ^= 1, rev[i<<1|1] ^= 1;
sum[i<<1] *= -1, sum[i<<1|1] *= -1;
swap(mx[i<<1], mn[i<<1]);
mx[i<<1] *= -1, mn[i<<1] *= -1;
swap(mx[i<<1|1], mn[i<<1|1]);
mx[i<<1|1] *= -1, mn[i<<1|1] *= -1;
rev[i] = 0;
}
}
void build(int i, int l, int r) {
if(l == r) {
mx[i] = mn[i] = sum[i] = w[l];
return;
}
int mid = (l + r) >> 1;
build(i<<1, l, mid);
build(i<<1|1, mid+1, r);
update(i);
}
void modify(int i, int l, int r, int x, int y) {
if(l == r) {
mx[i] = mn[i] = sum[i] = y;
return;
}
pushdown(i);
int mid = (l + r) >> 1;
if(x <= mid) modify(i<<1, l, mid, x, y);
else modify(i<<1|1, mid+1, r, x, y);
update(i);
}
void cover(int i, int l, int r, int x, int y) {
if(l == x && r == y) {
rev[i] ^= 1;
sum[i] *= -1;
swap(mx[i], mn[i]);
mx[i] *= -1, mn[i] *= -1;
return;
}
pushdown(i);
int mid = (l + r) >> 1;
if(y <= mid) cover(i<<1, l, mid, x, y);
else if(x > mid) cover(i<<1|1, mid+1, r, x, y);
else cover(i<<1, l, mid, x, mid), cover(i<<1|1, mid+1, r, mid+1, y);
update(i);
}
int querysum(int i, int l, int r, int x, int y) {
if(l == x && r == y) return sum[i];
pushdown(i);
int mid = (l + r) >> 1, res = 0;
if(y <= mid) res = querysum(i<<1, l, mid, x, y);
else if(x > mid) res = querysum(i<<1|1, mid+1, r, x, y);
else res = querysum(i<<1, l, mid, x, mid) + querysum(i<<1|1, mid+1, r, mid+1, y);
update(i);
return res;
}
int querymx(int i, int l, int r, int x, int y) {
if(l == x && r == y) return mx[i];
pushdown(i);
int mid = (l + r) >> 1, res = -INF;
if(y <= mid) res = querymx(i<<1, l, mid, x, y);
else if(x > mid) res = querymx(i<<1|1, mid+1, r, x, y);
else res = max(querymx(i<<1, l, mid, x, mid), querymx(i<<1|1, mid+1, r, mid+1, y));
update(i);
return res;
}
int querymn(int i, int l, int r, int x, int y) {
if(l == x && r == y) return mn[i];
pushdown(i);
int mid = (l + r) >> 1, res = INF;
if(y <= mid) res = querymn(i<<1, l, mid, x, y);
else if(x > mid) res = querymn(i<<1|1, mid+1, r, x, y);
else res = min(querymn(i<<1, l, mid, x, mid), querymn(i<<1|1, mid+1, r, mid+1, y));
update(i);
return res;
}
} inline void Invert(int x, int y) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
SegmentTree::cover(1, 1, n, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
if(x == y) return;
if(dep[x] < dep[y]) swap(x, y);
SegmentTree::cover(1, 1, n, dfn[y]+1, dfn[x]);
} inline int Sum(int x, int y) {
int res = 0;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
res += SegmentTree::querysum(1, 1, n, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
if(x == y) return res;
if(dep[x] < dep[y]) swap(x, y);
res += SegmentTree::querysum(1, 1, n, dfn[y]+1, dfn[x]);
return res;
} inline int Max(int x, int y) {
int res = -INF;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
res = max(res, SegmentTree::querymx(1, 1, n, dfn[top[x]], dfn[x]));
x = fa[top[x]];
}
if(x == y) return res;
if(dep[x] < dep[y]) swap(x, y);
res = max(res, SegmentTree::querymx(1, 1, n, dfn[y]+1, dfn[x]));
return res;
} inline int Min(int x, int y) {
int res = INF;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
res = min(res, SegmentTree::querymn(1, 1, n, dfn[top[x]], dfn[x]));
x = fa[top[x]];
}
if(x == y) return res;
if(dep[x] < dep[y]) swap(x, y);
res = min(res, SegmentTree::querymn(1, 1, n, dfn[y]+1, dfn[x]));
return res;
} int main() {
memset(fir, -1, sizeof fir);
read(n);
for(int x, y, z, i = 1; i < n; ++i)
read(x), read(y), read(z), Add(x+1, y+1, z, i);
dfs(1); dfs2(1, 1);
SegmentTree::build(1, 1, n);
read(m);
int x, y; char s[2];
while(m--) {
while(!isalpha(s[0]=getchar())); s[1] = getchar();
read(x), read(y);
if(s[0] == 'S') printf("%d\n", Sum(x+1, y+1));
else if(s[0] == 'M' && s[1] == 'A') printf("%d\n", Max(x+1, y+1));
else if(s[0] == 'M' && s[1] == 'I') printf("%d\n", Min(x+1, y+1));
else if(s[0] == 'C') SegmentTree::modify(1, 1, n, dfn[bel[x]], y);
else Invert(x+1, y+1);
}
}

BZOJ 2157: 旅游 (树链剖分+线段树)的更多相关文章

  1. bzoj 2157: 旅游【树链剖分+线段树】

    裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...

  2. BZOJ2157旅游——树链剖分+线段树

    题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路 ...

  3. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  4. BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)

    BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...

  5. BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)

    前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...

  6. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  7. BZOJ 3589 动态树 (树链剖分+线段树)

    前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...

  8. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  9. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  10. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

随机推荐

  1. #######【Python】【基础知识】【标准库】目录及学习规划 ######

    下述参考Python DOC https://docs.python.org/zh-cn/3/library/index.html 概述 可用性注释 内置函数 内置常量 由 site 模块添加的常量 ...

  2. 去除MFC特性之一

    先对文件读取路径进行去除,然后对程序中出现的其他地方进行慢慢去除. #include "WavIo.h" #include "mfcc.h" #include ...

  3. thinkPHP连接数据库报错:PDOException in Connection.php line 295

    跑去网上找了N多方法来尝试,重装apache.mysql.安装集成软件都试过了.错误一样. 后来细细分析,PDOException in Connection指的不就是PDO异常吗? 然后去了解了一些 ...

  4. Web前端开发CSS基础

    CSS 层叠样式表(英文全称:Cascading Style Sheets),是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的计算机语言.CSS不 ...

  5. CentOS 修改/etc/resolv.conf 重启network后又恢复到原来的状态?

    问题描述:CentOS 修改/etc/resolv.conf 执行service network restart后,/etc/resolv.conf又恢复到原来的状态 解决方法:/etc/resolv ...

  6. Java String类和StringBuffer类

    1.String类 用于字符串操作,本质是字符数组char[ ]. String对象的值是不可变的,即当你修改一个String对象的类容,JVM不会改变原来的对象,而是生成一个新String对象. 2 ...

  7. 4.Shell内部命令

    4.Shell内部命令内部命令是由shell自身提供的.如果某个内部命令的名称是一个简单命令的第一个单词,shell会直接执行这个命令,而不会启动其它程序.对于一些不可能或者不方便通过外部程序实现的功 ...

  8. 非常有用的pointer-events属性

    介绍 pointer-events是css3的一个属性,指定在什么情况下元素可以成为鼠标事件的target(包括鼠标的样式) 属性值 pointer-events属性有很多值,但是对于浏览器来说,只有 ...

  9. 在django中部署vue项目,不单独抽离dist文件

    1,在django项目下(app所在目录),新建vue项目,使用脚手架构建vue项目,vue create (项目名) 2,构建好以后,配置django: (1),配置settings: · 修改te ...

  10. VSCode主题自定义(附详细注释及本人主题分享)

    先来一张本人自己配置的主题截图,喜欢的拿去用: 下面说说怎么自定义主题: 1.     Ctrl + ,(Ctrl键 + 逗号键):打开设置,也可以依次点击编辑器左上角 => 文件 => ...