Codeforces 1239A. Ivan the Fool and the Probability Theory
注意到连续两个格子如果有相同颜色那么一路过去的都可以确定
比如一开始染了这两个位置:

然后发现后面整片过去都可以确定:

对于横着的情况也是一样,然后就会发现不可能出现横着两个和竖着两个同时都有的情况,因为这样一定会冲突,就一定不合法了
(自己画一下就知道了)
那么现在只要对行列分别计算即可,直接设 $f[i][0/1][0/1]$ 表示前 $i$ 个位置,当前位置为 $0/1$ 上一个位置为 $0/1$ 时的方案数
那么转移十分显然,然后答案就是行任意放的方案 $\sum_{i=0}^{1}\sum_{j=0}^{1}f[n][i][j]$ 加上列任意放的方案 $\sum_{i=0}^{1}\sum_{j=0}^{1}f[m][i][j]$ 减 $2$
减 $2$ 是因为黑白染色情况下的方案会被行和列都算到,要减去多算的次数
然后就可以过了,但是事实上如果直接设 $g[i]=\sum_{i=0}^{1}\sum_{j=0}^{1}f[n][i][j]$ ,然后分析原本 $f$ 的方程,那么你会发现 $g[i]$ 恰好等于 $g[i-1]+g[i-2]$
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+,mo=1e9+;
inline int fk(int x) { return x>=mo ? x-mo : x; }
int n,m,f[N][][];
int main()
{
n=read(),m=read(); int mx=max(n,m);
if(n==&&m==) { printf("2\n"); return ; }
f[][][]=f[][][]=f[][][]=f[][][]=;
for(int i=;i<=mx;i++)
{
f[i][][]=f[i-][][];
f[i][][]=fk(f[i-][][]+f[i-][][]);
f[i][][]=fk(f[i-][][]+f[i-][][]);
f[i][][]=f[i-][][];
}
if(n>m) swap(n,m);
if(n==) { printf("%d\n", fk(fk(f[m][][]+f[m][][]) + fk(f[m][][]+f[m][][])) ); return ; }
int ans=fk(fk(f[m][][]+f[m][][]) + fk(f[m][][]+f[m][][]));
ans=fk(ans-+mo);
ans=fk(ans+ fk(fk(f[n][][]+f[n][][]) + fk(f[n][][]+f[n][][])));
printf("%d\n",ans);
}
Codeforces 1239A. Ivan the Fool and the Probability Theory的更多相关文章
- Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)
题意 一个n*m的网格图,每个格子可以染黑色.白色,问你每个格子最多有一个相邻颜色相同的方案数 n,m<=1e5 思路 我们先处理\(1 \times m\)的情况 设\(f[i][j]\)为前 ...
- Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...
- Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)
题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$ 思路:先只考虑一行有多少种涂法 $dp[i][0 ...
- Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory
题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...
- Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)
题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案. 题解:首先我们考虑一维的情况 ...
- CF1239A Ivan the Fool and the Probability Theory
思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...
- CF C.Ivan the Fool and the Probability Theory【思维·构造】
题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...
- C - Ivan the Fool and the Probability Theory---div2
题目连接:https://codeforces.com/contest/1248/problem/C 思路: 注意上下两排的关系,如果说上面那一排有两个方格连续,那么他相邻的两排必定和他相反,如果说当 ...
- CodeForces 1100F Ivan and Burgers
CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...
随机推荐
- HTML语义化是什么?为什么要语义化?
HTML语义化HTML的语义化总结为: 用最恰当的标签来标记内容. 该如何理解呢?比如需要加入一个标题,这个标题的字体比正文的要大写,还要加粗.能够实现这种效果的方法有很多,比如用CSS样式进行渲染. ...
- 利用简易爬虫完成一道基础CTF题
利用简易爬虫完成一道基础CTF题 声明:本文主要写给新手,侧重于表现使用爬虫爬取页面并提交数据的大致过程,所以没有对一些东西解释的很详细,比如表单,post,get方法,感兴趣的可以私信或评论给我.如 ...
- PHP ajax 实现三级联动
在一个单独JS页面中,利用ajax实现三级联动,做成一个三级联动形式,以便于以后随时调用 JS代码: $(document).ready(function(e) { $("#sanji&qu ...
- POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE
POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...
- 前端知识点回顾之重点篇——ES6的Iterator和Generator
Iterator 迭代器是一种接口.是一种机制. 为各种不同的数据结构提供统一的访问机制.任何数据结构只要部署 Iterator 接口,就可以完成遍历操作(即依次处理该数据结构的所有成员). Iter ...
- ubuntu如何删除刚添加的源?
答: sudo add-apt-repository -r <source_url> 如: sudo add-apt-repository -r ppa:linaro-maintainer ...
- 使用PYTHON统计项目代码行数
目录 一 使用PYTHON统计项目代码行数 二 应用实例 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 使用PYTHON统计项目代码行数 遇到一个非常小的需求:统计一个项目里头的各类源代码 ...
- 传统Web应用请求和响应特点【显示当前时间】
(1)请求:浏览器以HTTP协议的方式提交请求到服务器 (2)响应:服务器以HTTP协议的方式响应内容到浏览器 注意:HTTP是WEB大众化非安全协议 HTTPS是WEB安全协议,是基于HTTP协议的 ...
- PCL中有哪些可用的PointT类型(4)
博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=269 PointWithViewpoint - float x, y, z, ...
- maven项目无法导入Oracle的jdbc连接jar包【我】
导入一个maven项目,启动一直报错 找不到Oracle的jdbc连接驱动Class, 用Eclipse导入 ojdbc14.jar 连接包,各种方法都无效,无法引入到部署后的lib目录中,可以直接放 ...