2024-11-13:求出所有子序列的能量和。用go语言,给定一个整数数组nums和一个正整数k, 定义一个子序列的能量为子序列中任意两个元素之间的差值绝对值的最小值。 找出nums中长度为k的所有子
2024-11-13:求出所有子序列的能量和。用go语言,给定一个整数数组nums和一个正整数k,
定义一个子序列的能量为子序列中任意两个元素之间的差值绝对值的最小值。
找出nums中长度为k的所有子序列的能量和,
对结果取模10^9 + 7后返回。
输入:nums = [1,2,3,4], k = 3。
输出:4。
解释:
nums 中总共有 4 个长度为 3 的子序列:[1,2,3] ,[1,3,4] ,[1,2,4] 和 [2,3,4] 。能量和为 |2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4 。
答案2024-11-13:
题目来自leetcode3098。
大体步骤如下:
1.输入解析:
输入一个整数数组
nums
和一个正整数k
。例如:
nums = [1, 2, 3, 4]
,k = 3
。
2.预处理:
对
nums
进行排序,以便更容易处理差值。计算所有可能的差值
vals
,即对于每一对(nums[i], nums[j])
(i > j
),计算nums[i] - nums[j]
,并将这些差值存入vals
。将一个无穷大值
inf
添加到vals
中,确保后续处理边界情况。对
vals
进行排序并去重,得到唯一的差值数组。
3.动态规划数组初始化:
初始化三维数组
d
,其中d[i][p][v]
表示考虑到第i
个元素,长度为p
的子序列中,最小差值为vals[v]
的子序列个数。初始化二维数组
border
,其中border[i][p]
表示考虑到第i
个元素,长度为p
的子序列中,当前处理到的vals
数组的索引边界。初始化二维数组
sum
和suf
,用于计算前缀和和后缀和,以便快速更新d
数组。
4.动态规划填充:
遍历
nums
中的每个元素nums[i]
,并对于每个j < i
,计算nums[i] - nums[j]
在vals
中的位置pos
。对于每个可能的子序列长度
p
(从1
到k
),更新d
,sum
,suf
, 和border
数组。这一步的核心是利用前缀和和后缀和快速更新
d
数组,以及利用border
数组来避免重复计算。
5.结果计算:
遍历每个
d[i][k][v]
,其中i
是nums
的索引,k
是子序列长度,v
是vals
的索引。计算每个
d[i][k][v]
对结果的贡献,即vals[v] * d[i][k][v]
,并累加到res
中。对
res
取模10^9 + 7
后返回。
6.输出:
- 输出最终计算得到的
res
。
时间复杂度:
排序
nums
:O(n log n)
生成
vals
并排序去重:O(n^2 log n^2)
(因为最多有n(n-1)/2
个差值,但去重和排序的复杂度较高)动态规划填充:
O(n^2 k m)
,其中n
是nums
的长度,k
是子序列长度,m
是vals
的长度(去重后的差值个数)。结果计算:
O(n m)
总时间复杂度:由于
m
最多为n^2
,因此总时间复杂度为O(n^4 k)
,但在实际情况下,由于vals
的去重,m
通常远小于n^2
。
空间复杂度:
三维数组
d
:O(n k m)
二维数组
border
,sum
,suf
:O(n k)
和O(k m)
其他辅助数组和变量:
O(n^2)
(用于存储差值vals
)总空间复杂度:
O(n k m + n^2)
,同样地,由于m
通常远小于n^2
,实际空间使用会更少。
综上所述,尽管理论上的时间复杂度和空间复杂度较高,但由于 vals
的去重和排序效率,以及动态规划过程中的前缀和、后缀和优化,实际运行时的性能可能会更好。
Go完整代码如下:
package main
import (
"fmt"
"sort"
)
const mod = 1e9 + 7
const inf = 0x3f3f3f3f
func sumOfPowers(nums []int, k int) int {
n := len(nums)
sort.Ints(nums)
var vals []int
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
vals = append(vals, nums[i]-nums[j])
}
}
vals = append(vals, inf)
sort.Ints(vals)
vals = unique(vals)
d := make([][][]int, n)
for i := range d {
d[i] = make([][]int, k+1)
for j := range d[i] {
d[i][j] = make([]int, len(vals))
}
}
border := make([][]int, n)
for i := range border {
border[i] = make([]int, k+1)
}
sum := make([][]int, k+1)
for i := range sum {
sum[i] = make([]int, len(vals))
}
suf := make([][]int, n)
for i := range suf {
suf[i] = make([]int, k+1)
}
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
pos := sort.SearchInts(vals, nums[i]-nums[j])
for p := 1; p <= k; p++ {
for border[j][p] < pos {
sum[p][border[j][p]] = (sum[p][border[j][p]] - suf[j][p] + mod) % mod
sum[p][border[j][p]] = (sum[p][border[j][p]] + d[j][p][border[j][p]]) % mod
suf[j][p] = (suf[j][p] - d[j][p][border[j][p]] + mod) % mod
border[j][p]++
sum[p][border[j][p]] = (sum[p][border[j][p]] + suf[j][p]) % mod
}
}
}
d[i][1][len(vals)-1] = 1
for p := 2; p <= k; p++ {
for v := 0; v < len(vals); v++ {
d[i][p][v] = sum[p-1][v]
}
}
for p := 1; p <= k; p++ {
for v := 0; v < len(vals); v++ {
suf[i][p] = (suf[i][p] + d[i][p][v]) % mod
}
sum[p][0] = (sum[p][0] + suf[i][p]) % mod
}
}
res := 0
for i := 0; i < n; i++ {
for v := 0; v < len(vals); v++ {
res = (res + int(int64(vals[v])*int64(d[i][k][v])%mod)) % mod
}
}
return res
}
func unique(arr []int) []int {
if len(arr) == 0 {
return arr
}
result := []int{arr[0]}
for _, v := range arr {
if v != result[len(result)-1] {
result = append(result, v)
}
}
return result
}
func main() {
nums := []int{1, 2, 3, 4}
k := 3
fmt.Println(sumOfPowers(nums, k))
}
Rust完整代码如下:
use std::collections::HashSet;
const MOD: i32 = 1_000_000_007;
const INF: i32 = 0x3f3f3f3f;
fn sum_of_powers(nums: Vec<i32>, k: usize) -> i32 {
let n = nums.len();
let mut nums = nums;
nums.sort();
let mut vals = Vec::new();
for i in 0..n {
for j in 0..i {
vals.push(nums[i] - nums[j]);
}
}
vals.push(INF);
vals.sort();
vals = unique(vals);
let mut d = vec![vec![vec![0; vals.len()]; k + 1]; n];
let mut border = vec![vec![0; k + 1]; n];
let mut sum = vec![vec![0; vals.len()]; k + 1];
let mut suf = vec![vec![0; k + 1]; n];
for i in 0..n {
for j in 0..i {
let pos = match vals.binary_search(&(nums[i] - nums[j])) {
Ok(p) => p,
Err(p) => p,
};
for p in 1..=k {
while border[j][p] < pos {
sum[p][border[j][p]] =
(sum[p][border[j][p]] - suf[j][p] + MOD) % MOD;
sum[p][border[j][p]] =
(sum[p][border[j][p]] + d[j][p][border[j][p]]) % MOD;
suf[j][p] = (suf[j][p] - d[j][p][border[j][p]] + MOD) % MOD;
border[j][p] += 1;
sum[p][border[j][p]] =
(sum[p][border[j][p]] + suf[j][p]) % MOD;
}
}
}
d[i][1][vals.len() - 1] = 1;
for p in 2..=k {
for v in 0..vals.len() {
d[i][p][v] = sum[p - 1][v];
}
}
for p in 1..=k {
for v in 0..vals.len() {
suf[i][p] = (suf[i][p] + d[i][p][v]) % MOD;
}
sum[p][0] = (sum[p][0] + suf[i][p]) % MOD;
}
}
let mut res = 0;
for i in 0..n {
for v in 0..vals.len() {
res = (res + vals[v] as i64 * d[i][k][v] as i64 % MOD as i64) % MOD as i64;
}
}
res as i32
}
fn unique(mut arr: Vec<i32>) -> Vec<i32> {
if arr.is_empty() {
return arr;
}
arr.sort();
let mut result = Vec::new();
let mut prev = arr[0];
result.push(prev);
for &v in &arr[1..] {
if v != prev {
result.push(v);
prev = v;
}
}
result
}
fn main() {
let nums = vec![1, 2, 3, 4];
let k = 3;
println!("{}", sum_of_powers(nums, k));
}
2024-11-13:求出所有子序列的能量和。用go语言,给定一个整数数组nums和一个正整数k, 定义一个子序列的能量为子序列中任意两个元素之间的差值绝对值的最小值。 找出nums中长度为k的所有子的更多相关文章
- JAVA中计算两个日期时间的差值竟然也有这么多门道
上半年春招的时候,作为面试官,对于面试表现的不错的同学会要求其写一小段代码看看.题目很简单: 给定一个日期,然后计算下距离今天相差的天数. 本以为这么个问题就是用来活跃面试氛围的,但是结果却让人大跌眼 ...
- 在excel中如何计算两个时间之间的差[转]
因为时间是由序列号所代表的,用户可以用较晚的时间减去较早的时间以得到间隔.例如,单元格A3含有5:30,单元格B3含有14:00,下面的公式返回8:30(间隔8小时30分). =B3-A3 然而,如果 ...
- [Xcode 实际操作]九、实用进阶-(4)计算两个日期间的差值
目录:[Swift]Xcode实际操作 本文将演示如何计算两个日期之间的差值. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit class ...
- 用Scala实现集合中相邻元素间的差值
欢迎转载,转载请注明出处,徽沪一郎. 概要 代码这东西,不写肯定不行,新学Scala不久,将实际遇到的一些问题记录下来,日后也好查找. 今天讲的是如何计算同一集合中元素两两之间的差值,即求开始集合(a ...
- 给定一个数组,求如果排序后,相邻两个元素的最大差值,要求时间复杂度为O(N)
第一种方法: 计数排序后,然后找出两两之间的最大差值 计数排序的时间复杂度是O(N) public class CountSort { public static void main(String[] ...
- Jquery计算时间戳之间的差值,可返回年,月,日,小时等
/** * 计算时间戳之间的差值 * @param startTime 开始时间戳 * @param endTime 结束时间戳 * @param type 返回指定类型差值(year, month, ...
- 218。重复元素II(重复元素的下标差值<=K)(哈希)
给定一个整数数组和一个整数 k,判断数组中是否存在两个不同的索引 i 和 j,使得 nums [i] = nums [j],并且 i 和 j 的差的 绝对值 至多为 k. 示例 1: 输入: nums ...
- js计算两个日期的天数差值
js计算两个日期的天数差值 通过两个日期计算这两个日期之间的天数差值 /** * 计算天数差的函数,通用 * @param sDate1 * @param sDate2 * @returns {Num ...
- [转]ASP.NET MVC中的两个Action之间值的传递--TempData
本文转自:ASP.NET MVC中的两个Action之间值的传递--TempData 一. ASP.NET MVC中的TempData 在ASP.NET MVC框架的ControllerBase中存在 ...
- 【编程题目】一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值★★ (自己没有做出来!!)
45.雅虎(运算.矩阵): 2.一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值 比如{3,2,4,3,6} 可以分成 {3,2,4,3,6} m=1; {3,6}{2,4 ...
随机推荐
- Win32_GDI_绘制文字路径透明窗口
效果图: 前面字体是个透明窗口 后面是桌面背景 代码实现: void MyMainDialog::TextPathWindow(LPCTSTR lpShowText) { HDC hdc = GetD ...
- esp32挂esphome
esp32挂esphome 使用docker创建容器 docker run -d --name='esphome' \ --restart=always \ -p 6052:6052 \ -e TZ= ...
- equals与hashCode关系梳理
目录 equals用法 hashCode用法 总结 为什么一个类中需要两个比较方法 为什么重写 equals 方法时必须同时重写 hashCode 方法? Reference 这个并不是一个通用性编程 ...
- TwinCAT3 - 实现CiA402
目录 1,起缘 2,想办法 3,开搞 3.1,CANOpen通信 3.1.1 对象字典 3.1.2 通信建立 3.2,CiA402伺服状态机 3.3,伺服运行 3.3.1 操作模式 3.3.2 轮廓位 ...
- VMware Workstation Pro 开启虚拟化引擎
摘要:想开启 VMware Workstation Pro 虚拟机上的 虚拟化 Intel VT-x/EPT 或 AMD-V/RVI 选项,却发现打不开.在网上一番搜集之后找到了解决办法. ️ 注意: ...
- linux 前端部署 tomcat 脚本
前提: 打包后的文件位置:/home/usr/back 目的部署位置:/home/usr/prod1 目的部署位置:/home/usr/prod2 在linux 服务器上 新增文件deploy-web ...
- .net core 依赖注入,运行报错 Cannot consume scoped 'xxx' service from singleton 'yyy'
这是因为 xxx 的生命周期是 AddScoped 注入的,而 yyy 的生命周期是 AddSingleton ,然后 yyy 这个单例的对象中,它又依赖了xxx 也就是说,单例注入的对象中依赖了 A ...
- 【YashanDB数据库】YashanDB如何回收表空间
确认表空间高水位线,是否有可回收空间. select a.tablespace_name,a.high_water_mark,b.user_bytes,b.total_bytes from (SELE ...
- redis 基准性能测试与变慢优化
redis 参考目录: 生产级Redis 高并发分布式锁实战1:高并发分布式锁如何实现 https://www.cnblogs.com/yizhiamumu/p/16556153.html 生产级Re ...
- 6.9找回机制接口安全&验证码token接口
响应包response burp截取拦截,改相应包: 思路:此处应该若是修改密码,先抓到修改成功数据包(截取验证关键字),在替换为需要绕过的数据包,截取response数据包,修改验证成功关键字达到绕 ...