2024-11-13:求出所有子序列的能量和。用go语言,给定一个整数数组nums和一个正整数k,

定义一个子序列的能量为子序列中任意两个元素之间的差值绝对值的最小值。

找出nums中长度为k的所有子序列的能量和,

对结果取模10^9 + 7后返回。

输入:nums = [1,2,3,4], k = 3。

输出:4。

解释:

nums 中总共有 4 个长度为 3 的子序列:[1,2,3] ,[1,3,4] ,[1,2,4] 和 [2,3,4] 。能量和为 |2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4 。

答案2024-11-13:

chatgpt

题目来自leetcode3098。

大体步骤如下:

1.输入解析

  • 输入一个整数数组 nums 和一个正整数 k

  • 例如:nums = [1, 2, 3, 4]k = 3

2.预处理

  • nums 进行排序,以便更容易处理差值。

  • 计算所有可能的差值 vals,即对于每一对 (nums[i], nums[j])i > j),计算 nums[i] - nums[j],并将这些差值存入 vals

  • 将一个无穷大值 inf 添加到 vals 中,确保后续处理边界情况。

  • vals 进行排序并去重,得到唯一的差值数组。

3.动态规划数组初始化

  • 初始化三维数组 d,其中 d[i][p][v] 表示考虑到第 i 个元素,长度为 p 的子序列中,最小差值为 vals[v] 的子序列个数。

  • 初始化二维数组 border,其中 border[i][p] 表示考虑到第 i 个元素,长度为 p 的子序列中,当前处理到的 vals 数组的索引边界。

  • 初始化二维数组 sumsuf,用于计算前缀和和后缀和,以便快速更新 d 数组。

4.动态规划填充

  • 遍历 nums 中的每个元素 nums[i],并对于每个 j < i,计算 nums[i] - nums[j]vals 中的位置 pos

  • 对于每个可能的子序列长度 p(从 1k),更新 d, sum, suf, 和 border 数组。

  • 这一步的核心是利用前缀和和后缀和快速更新 d 数组,以及利用 border 数组来避免重复计算。

5.结果计算

  • 遍历每个 d[i][k][v],其中 inums 的索引,k 是子序列长度,vvals 的索引。

  • 计算每个 d[i][k][v] 对结果的贡献,即 vals[v] * d[i][k][v],并累加到 res 中。

  • res 取模 10^9 + 7 后返回。

6.输出

  • 输出最终计算得到的 res

时间复杂度

  • 排序 numsO(n log n)

  • 生成 vals 并排序去重:O(n^2 log n^2)(因为最多有 n(n-1)/2 个差值,但去重和排序的复杂度较高)

  • 动态规划填充:O(n^2 k m),其中 nnums 的长度,k 是子序列长度,mvals 的长度(去重后的差值个数)。

  • 结果计算:O(n m)

  • 总时间复杂度:由于 m 最多为 n^2,因此总时间复杂度为 O(n^4 k),但在实际情况下,由于 vals 的去重,m 通常远小于 n^2

空间复杂度

  • 三维数组 dO(n k m)

  • 二维数组 border, sum, sufO(n k)O(k m)

  • 其他辅助数组和变量:O(n^2)(用于存储差值 vals

  • 总空间复杂度:O(n k m + n^2),同样地,由于 m 通常远小于 n^2,实际空间使用会更少。

综上所述,尽管理论上的时间复杂度和空间复杂度较高,但由于 vals 的去重和排序效率,以及动态规划过程中的前缀和、后缀和优化,实际运行时的性能可能会更好。

Go完整代码如下:

package main

import (
"fmt"
"sort"
) const mod = 1e9 + 7
const inf = 0x3f3f3f3f func sumOfPowers(nums []int, k int) int {
n := len(nums)
sort.Ints(nums) var vals []int
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
vals = append(vals, nums[i]-nums[j])
}
}
vals = append(vals, inf)
sort.Ints(vals)
vals = unique(vals) d := make([][][]int, n)
for i := range d {
d[i] = make([][]int, k+1)
for j := range d[i] {
d[i][j] = make([]int, len(vals))
}
} border := make([][]int, n)
for i := range border {
border[i] = make([]int, k+1)
} sum := make([][]int, k+1)
for i := range sum {
sum[i] = make([]int, len(vals))
} suf := make([][]int, n)
for i := range suf {
suf[i] = make([]int, k+1)
}
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
pos := sort.SearchInts(vals, nums[i]-nums[j])
for p := 1; p <= k; p++ {
for border[j][p] < pos {
sum[p][border[j][p]] = (sum[p][border[j][p]] - suf[j][p] + mod) % mod
sum[p][border[j][p]] = (sum[p][border[j][p]] + d[j][p][border[j][p]]) % mod
suf[j][p] = (suf[j][p] - d[j][p][border[j][p]] + mod) % mod
border[j][p]++
sum[p][border[j][p]] = (sum[p][border[j][p]] + suf[j][p]) % mod
}
}
} d[i][1][len(vals)-1] = 1
for p := 2; p <= k; p++ {
for v := 0; v < len(vals); v++ {
d[i][p][v] = sum[p-1][v]
}
}
for p := 1; p <= k; p++ {
for v := 0; v < len(vals); v++ {
suf[i][p] = (suf[i][p] + d[i][p][v]) % mod
}
sum[p][0] = (sum[p][0] + suf[i][p]) % mod
}
} res := 0
for i := 0; i < n; i++ {
for v := 0; v < len(vals); v++ {
res = (res + int(int64(vals[v])*int64(d[i][k][v])%mod)) % mod
}
}
return res
} func unique(arr []int) []int {
if len(arr) == 0 {
return arr
}
result := []int{arr[0]}
for _, v := range arr {
if v != result[len(result)-1] {
result = append(result, v)
}
}
return result
} func main() {
nums := []int{1, 2, 3, 4}
k := 3
fmt.Println(sumOfPowers(nums, k))
}

Rust完整代码如下:

use std::collections::HashSet;

const MOD: i32 = 1_000_000_007;
const INF: i32 = 0x3f3f3f3f; fn sum_of_powers(nums: Vec<i32>, k: usize) -> i32 {
let n = nums.len();
let mut nums = nums;
nums.sort(); let mut vals = Vec::new();
for i in 0..n {
for j in 0..i {
vals.push(nums[i] - nums[j]);
}
}
vals.push(INF);
vals.sort();
vals = unique(vals); let mut d = vec![vec![vec![0; vals.len()]; k + 1]; n]; let mut border = vec![vec![0; k + 1]; n];
let mut sum = vec![vec![0; vals.len()]; k + 1];
let mut suf = vec![vec![0; k + 1]; n]; for i in 0..n {
for j in 0..i {
let pos = match vals.binary_search(&(nums[i] - nums[j])) {
Ok(p) => p,
Err(p) => p,
};
for p in 1..=k {
while border[j][p] < pos {
sum[p][border[j][p]] =
(sum[p][border[j][p]] - suf[j][p] + MOD) % MOD;
sum[p][border[j][p]] =
(sum[p][border[j][p]] + d[j][p][border[j][p]]) % MOD;
suf[j][p] = (suf[j][p] - d[j][p][border[j][p]] + MOD) % MOD;
border[j][p] += 1;
sum[p][border[j][p]] =
(sum[p][border[j][p]] + suf[j][p]) % MOD;
}
}
} d[i][1][vals.len() - 1] = 1;
for p in 2..=k {
for v in 0..vals.len() {
d[i][p][v] = sum[p - 1][v];
}
}
for p in 1..=k {
for v in 0..vals.len() {
suf[i][p] = (suf[i][p] + d[i][p][v]) % MOD;
}
sum[p][0] = (sum[p][0] + suf[i][p]) % MOD;
}
} let mut res = 0;
for i in 0..n {
for v in 0..vals.len() {
res = (res + vals[v] as i64 * d[i][k][v] as i64 % MOD as i64) % MOD as i64;
}
}
res as i32
} fn unique(mut arr: Vec<i32>) -> Vec<i32> {
if arr.is_empty() {
return arr;
}
arr.sort();
let mut result = Vec::new();
let mut prev = arr[0];
result.push(prev);
for &v in &arr[1..] {
if v != prev {
result.push(v);
prev = v;
}
}
result
} fn main() {
let nums = vec![1, 2, 3, 4];
let k = 3;
println!("{}", sum_of_powers(nums, k));
}

2024-11-13:求出所有子序列的能量和。用go语言,给定一个整数数组nums和一个正整数k, 定义一个子序列的能量为子序列中任意两个元素之间的差值绝对值的最小值。 找出nums中长度为k的所有子的更多相关文章

  1. JAVA中计算两个日期时间的差值竟然也有这么多门道

    上半年春招的时候,作为面试官,对于面试表现的不错的同学会要求其写一小段代码看看.题目很简单: 给定一个日期,然后计算下距离今天相差的天数. 本以为这么个问题就是用来活跃面试氛围的,但是结果却让人大跌眼 ...

  2. 在excel中如何计算两个时间之间的差[转]

    因为时间是由序列号所代表的,用户可以用较晚的时间减去较早的时间以得到间隔.例如,单元格A3含有5:30,单元格B3含有14:00,下面的公式返回8:30(间隔8小时30分). =B3-A3 然而,如果 ...

  3. [Xcode 实际操作]九、实用进阶-(4)计算两个日期间的差值

    目录:[Swift]Xcode实际操作 本文将演示如何计算两个日期之间的差值. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit class ...

  4. 用Scala实现集合中相邻元素间的差值

    欢迎转载,转载请注明出处,徽沪一郎. 概要 代码这东西,不写肯定不行,新学Scala不久,将实际遇到的一些问题记录下来,日后也好查找. 今天讲的是如何计算同一集合中元素两两之间的差值,即求开始集合(a ...

  5. 给定一个数组,求如果排序后,相邻两个元素的最大差值,要求时间复杂度为O(N)

    第一种方法: 计数排序后,然后找出两两之间的最大差值 计数排序的时间复杂度是O(N) public class CountSort { public static void main(String[] ...

  6. Jquery计算时间戳之间的差值,可返回年,月,日,小时等

    /** * 计算时间戳之间的差值 * @param startTime 开始时间戳 * @param endTime 结束时间戳 * @param type 返回指定类型差值(year, month, ...

  7. 218。重复元素II(重复元素的下标差值<=K)(哈希)

    给定一个整数数组和一个整数 k,判断数组中是否存在两个不同的索引 i 和 j,使得 nums [i] = nums [j],并且 i 和 j 的差的 绝对值 至多为 k. 示例 1: 输入: nums ...

  8. js计算两个日期的天数差值

    js计算两个日期的天数差值 通过两个日期计算这两个日期之间的天数差值 /** * 计算天数差的函数,通用 * @param sDate1 * @param sDate2 * @returns {Num ...

  9. [转]ASP.NET MVC中的两个Action之间值的传递--TempData

    本文转自:ASP.NET MVC中的两个Action之间值的传递--TempData 一. ASP.NET MVC中的TempData 在ASP.NET MVC框架的ControllerBase中存在 ...

  10. 【编程题目】一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值★★ (自己没有做出来!!)

    45.雅虎(运算.矩阵): 2.一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值 比如{3,2,4,3,6} 可以分成 {3,2,4,3,6} m=1; {3,6}{2,4 ...

随机推荐

  1. TCP/TP协议栈(逐渐更新版)

    TCP/IP协议栈 应用层 DNS协议 传输层 TCP协议 TCP协议报文结构 源端口 目的端口 序列号 确认号 头长度header length or data offset 保留字段reserve ...

  2. 使用 Microsoft Remote Desktop 远程连接 Windows

    Windows 使用 Microsoft 帐户登录 远程连接时使用的用户名和密码是你的 Microsoft 帐户的用户名和密码 Windows 使用本地帐户登录 远程连接时使用的用户名和密码是你本地登 ...

  3. IP服务正常,域名服务异常,报400 badrequest

    IP的情况下,访问接口都正常,使用域名访问,报错400 badrequest 经确认,ssl配置无问题,证书文件本身无问题 最后查出来原因,是域名格式的问题,原域名中包含_,需要修改为- 排查过程: ...

  4. SQL 求中位值

    题目A median is defined as a number separating the higher half of a data set from the lower half. Quer ...

  5. exceptionless 在 windows 上 手动部署,非docker 详细步骤

    关于exceptionless 是什么我就不多说了,能看到这篇文章的都知道了.网上几乎都是docker部署的,docker部署的确十分方便,但是有的人没有条件用docker,像我就不想花这个钱去多服务 ...

  6. 【YashanDB知识库】数据库审计shutdown immediate操作导致数据库异常退出

    [问题分类]功能使用 [关键字]数据库审计,shutdown immediate [问题描述]审计shutdown immediate 操作,数据库作主从切换时会导致数据库异常退出. [问题原因分析] ...

  7. AT_agc057_e 题解

    AT_agc057_e [0] 约定 \(r_i = \sum\limits_{j = 1}^{m}[A_{i,j}\le k]\) \(r^{'}_i = \sum\limits_{j = 1}^{ ...

  8. CSS – Flex

    前言 Flex 诞生在 Float 之后, Grid 之前, 它主要是取代 Float 来实现布局. 而它没有 cover 到的地方则由 Grid 弥补. 所以当前, 我们做布局时, 几乎不用 Flo ...

  9. Powershell 重新排列 Windows环境变量

    最近乱搞环境变量,然后有些重复了,遂写个脚本去重下排序下. 环境变量有长度限制,如果超出了,比如SqlServer相关的,将共同路径单独搞个变量声明下,比如 将其路径手动替换成如下,可大幅压缩变量长度 ...

  10. Java如何解决同时出库入库订单号自动获取问题

    在Java中处理同时出库和入库的订单号自动获取问题,通常涉及到多线程环境下的并发控制.为了确保订单号的唯一性和连续性,我们可以使用多种策略,如数据库的自增ID.分布式锁.或者利用Java的并发工具类如 ...