package com.softeem.jbs.lesson4;

import java.util.Random;

/**

* 排序测试类

*

* 排序算法的分类如下:

* 1.插入排序(直接插入排序、折半插入排序、希尔排序);

* 2.交换排序(冒泡泡排序、快速排序);

* 3.选择排序(直接选择排序、堆排序);

* 4.归并排序;

* 5.基数排序。

*

* 关于排序方法的选择:

* (1)若n较小(如n≤50),可采用直接插入或直接选择排序。

*  当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。

* (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;

* (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

*

*/

public class SortTest {

/**

* 初始化测试数组的方法

@return 一个初始化好的数组

*/

public int[] createArray() {

Random random = new Random();

int[] array = new int[10];

for (int i = 0; i < 10; i++) {

array[i] = random.nextInt(100) - random.nextInt(100);//生成两个随机数相减,保证生成的数中有负数

}

System.out.println("==========原始序列==========");

printArray(array);

return array;

}

/**

* 打印数组中的元素到控制台

@param source

*/

public void printArray(int[] data) {

for (int i : data) {

System.out.print(i + " ");

}

System.out.println();

}

/**

* 交换数组中指定的两元素的位置

@param data

@param x

@param y

*/

private void swap(int[] data, int x, int y)
{

int temp = data[x];

data[x] = data[y];

data[y] = temp;

}

/**

* 冒泡排序----交换排序的一种

* 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。

* 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4

*

@param data 要排序的数组

@param sortType 排序类型

@return

*/

public void bubbleSort(int[] data, String sortType) {

if (sortType.equals("asc")) { //正排序,从小排到大

//比较的轮数

for (int i = 1; i < data.length; i++) {

//将相邻两个数进行比较,较大的数往后冒泡

for (int j = 0; j < data.length - i; j++) {

if (data[j] > data[j + 1]) {

//交换相邻两个数

swap(data, j, j + 1);

}

}

}

else if (sortType.equals("desc")) { //倒排序,从大排到小

//比较的轮数

for (int i = 1; i < data.length; i++) {

//将相邻两个数进行比较,较大的数往后冒泡

for (int j = 0; j < data.length - i; j++) {

if (data[j] < data[j + 1]) {

//交换相邻两个数

swap(data, j, j + 1);

}

}

}

else {

System.out.println("您输入的排序类型错误!");

}

printArray(data);//输出冒泡排序后的数组值

}

/**

* 直接选择排序法----选择排序的一种

* 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

* 性能:比较次数O(n^2),n^2/2

*       交换次数O(n),n

*       交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。

*       但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。

*

@param data 要排序的数组

@param sortType 排序类型

@return

*/

public void selectSort(int[] data, String sortType) {

if (sortType.equals("asc")) { //正排序,从小排到大

int index;

for (int i = 1; i < data.length; i++) {

index = 0;

for (int j = 1; j <= data.length - i; j++) {

if (data[j] > data[index]) {

index = j;

}

}

//交换在位置data.length-i和index(最大值)两个数

swap(data, data.length - i, index);

}

else if (sortType.equals("desc")) { //倒排序,从大排到小

int index;

for (int i = 1; i < data.length; i++) {

index = 0;

for (int j = 1; j <= data.length - i; j++) {

if (data[j] < data[index]) {

index = j;

}

}

//交换在位置data.length-i和index(最大值)两个数

swap(data, data.length - i, index);

}

else {

System.out.println("您输入的排序类型错误!");

}

printArray(data);//输出直接选择排序后的数组值

}

/**

* 插入排序

的有序表。

* 性能:比较次数O(n^2),n^2/4

*       复制次数O(n),n^2/4

*       比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。

*

@param data 要排序的数组

@param sortType 排序类型

*/

public void insertSort(int[] data, String sortType) {

if (sortType.equals("asc")) { //正排序,从小排到大

//比较的轮数

for (int i = 1; i < data.length; i++) {

//保证前i+1个数排好序

for (int j = 0; j < i; j++) {

if (data[j] > data[i]) {

//交换在位置j和i两个数

swap(data, i, j);

}

}

}

else if (sortType.equals("desc")) { //倒排序,从大排到小

//比较的轮数

for (int i = 1; i < data.length; i++) {

//保证前i+1个数排好序

for (int j = 0; j < i; j++) {

if (data[j] < data[i]) {

//交换在位置j和i两个数

swap(data, i, j);

}

}

}

else {

System.out.println("您输入的排序类型错误!");

}

printArray(data);//输出插入排序后的数组值

}

/**

* 反转数组的方法

@param data 源数组

*/

public void reverse(int[] data) {

int length = data.length;

int temp = 0;//临时变量

for (int i = 0; i < length / 2; i++) {

temp = data[i];

data[i] = data[length - 1 - i];

data[length - 1 - i] = temp;

}

printArray(data);//输出到转后数组的值

}

/**

* 快速排序

* 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。

* 步骤为:

* 1. 从数列中挑出一个元素,称为 "基准"(pivot),

* 2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。

* 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

* 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

@param data 待排序的数组

@param low

@param high

@see SortTest#qsort(int[], int, int)

@see SortTest#qsort_desc(int[], int, int)

*/

public void quickSort(int[] data, String sortType) {

if (sortType.equals("asc")) { //正排序,从小排到大

qsort_asc(data, 0, data.length - 1);

else if (sortType.equals("desc")) { //倒排序,从大排到小

qsort_desc(data, 0, data.length - 1);

else {

System.out.println("您输入的排序类型错误!");

}

}

/**

* 快速排序的具体实现,排正序

@param data

@param low

@param high

*/

private void qsort_asc(int data[], int low, int high)
{

int i, j, x;

if (low < high) { //这个条件用来结束递归

i = low;

j = high;

x = data[i];

while (i < j) {

while (i < j && data[j] > x) {

j--; //从右向左找第一个小于x的数

}

if (i < j) {

data[i] = data[j];

i++;

}

while (i < j && data[i] < x) {

i++; //从左向右找第一个大于x的数

}

if (i < j) {

data[j] = data[i];

j--;

}

}

data[i] = x;

qsort_asc(data, low, i - 1);

qsort_asc(data, i + 1, high);

}

}

/**

* 快速排序的具体实现,排倒序

@param data

@param low

@param high

*/

private void qsort_desc(int data[], int low, int high)
{

int i, j, x;

if (low < high) { //这个条件用来结束递归

i = low;

j = high;

x = data[i];

while (i < j) {

while (i < j && data[j] < x) {

j--; //从右向左找第一个小于x的数

}

if (i < j) {

data[i] = data[j];

i++;

}

while (i < j && data[i] > x) {

i++; //从左向右找第一个大于x的数

}

if (i < j) {

data[j] = data[i];

j--;

}

}

data[i] = x;

qsort_desc(data, low, i - 1);

qsort_desc(data, i + 1, high);

}

}

/**

*二分查找特定整数在整型数组中的位置(递归)

*查找线性表必须是有序列表

*@paramdataset

*@paramdata

*@parambeginIndex

*@paramendIndex

*@returnindex

*/

public int binarySearch(int[] dataset, int data, int beginIndex,

int endIndex) {

int midIndex = (beginIndex + endIndex) >>> 1; //相当于mid
= (low + high) / 2,但是效率会高些

if (data < dataset[beginIndex] || data > dataset[endIndex]

|| beginIndex > endIndex)

return -1;

if (data < dataset[midIndex]) {

return binarySearch(dataset, data, beginIndex, midIndex - 1);

else if (data > dataset[midIndex]) {

return binarySearch(dataset, data, midIndex + 1, endIndex);

else {

return midIndex;

}

}

/**

*二分查找特定整数在整型数组中的位置(非递归)

*查找线性表必须是有序列表

*@paramdataset

*@paramdata

*@returnindex

*/

public int binarySearch(int[] dataset, int data)
{

int beginIndex = 0;

int endIndex = dataset.length - 1;

int midIndex = -1;

if (data < dataset[beginIndex] || data > dataset[endIndex]

|| beginIndex > endIndex)

return -1;

while (beginIndex <= endIndex) {

midIndex = (beginIndex + endIndex) >>> 1; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些

if (data < dataset[midIndex]) {

endIndex = midIndex - 1;

else if (data > dataset[midIndex]) {

beginIndex = midIndex + 1;

else {

return midIndex;

}

}

return -1;

}

public static void main(String[] args) {

SortTest sortTest = new SortTest();

int[] array = sortTest.createArray();

System.out.println("==========冒泡排序后(正序)==========");

sortTest.bubbleSort(array, "asc");

System.out.println("==========冒泡排序后(倒序)==========");

sortTest.bubbleSort(array, "desc");

array = sortTest.createArray();

System.out.println("==========倒转数组后==========");

sortTest.reverse(array);

array = sortTest.createArray();

System.out.println("==========选择排序后(正序)==========");

sortTest.selectSort(array, "asc");

System.out.println("==========选择排序后(倒序)==========");

sortTest.selectSort(array, "desc");

array = sortTest.createArray();

System.out.println("==========插入排序后(正序)==========");

sortTest.insertSort(array, "asc");

System.out.println("==========插入排序后(倒序)==========");

sortTest.insertSort(array, "desc");

array = sortTest.createArray();

System.out.println("==========快速排序后(正序)==========");

sortTest.quickSort(array, "asc");

sortTest.printArray(array);

System.out.println("==========快速排序后(倒序)==========");

sortTest.quickSort(array, "desc");

sortTest.printArray(array);

System.out.println("==========数组二分查找==========");

System.out.println("您要找的数在第" + sortTest.binarySearch(array,
74)

+ 计算)");

}

}

转载地址:http://blog.csdn.net/lenotang/archive/2008/11/29/3411346.aspx

(转)JAVA排序汇总的更多相关文章

  1. java排序集锦

    java实现排序的一些方法,来自:http://www.javaeye.com/topic/548520 package sort; import java.util.Random; /** * 排序 ...

  2. 常用Java排序算法

    常用Java排序算法 冒泡排序 .选择排序.快速排序 package com.javaee.corejava; public class DataSort { public DataSort() { ...

  3. ios 排序汇总

    ios 排序汇总  IOS几种简单有效的数组排序方法 //第一种,利用数组的sortedArrayUsingComparator调用 NSComparator ,obj1和obj2指的数组中的对象 N ...

  4. Java排序算法之直接选择排序

    Java排序算法之直接选择排序 基本过程:假设一序列为R[0]~R[n-1],第一次用R[0]和R[1]~R[n-1]相比较,若小于R[0],则交换至R[0]位置上.第二次从R[1]~R[n-1]中选 ...

  5. Java设计模式汇总

    Java设计模式汇总 设计模式分为三大类: 创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 结构型模式,共七种:适配器模式.装饰器模式.代理模式.外观模式.桥接模式. ...

  6. java排序算法(一):概述

    java排序算法(一)概述 排序是程序开发中一种非常常见的操作,对一组任意的数据元素(活记录)经过排序操作后,就可以把它们变成一组按关键字排序的一组有序序列 对一个排序的算法来说,一般从下面三个方面来 ...

  7. java排序算法(十):桶式排序

    java排序算法(十):桶式排序 桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征: 待排序列所有的值处于一个可枚举的范围之类: 待排序 ...

  8. java排序算法(九):归并排序

    java排序算法(九):归并排序

  9. java排序算法(八):希尔排序(shell排序)

    java排序算法(八):希尔排序(shell排序) 希尔排序(缩小增量法)属于插入类排序,由shell提出,希尔排序对直接插入排序进行了简单的改进,它通过加大插入排序中元素之间的间隔,并在这些有间隔的 ...

随机推荐

  1. Python爬虫-爬小说

    用途 用来爬小说网站的小说默认是这本御天邪神,虽然我并没有看小说,但是丝毫不妨碍我用爬虫来爬小说啊. 如果下载不到txt,那不如自己把txt爬下来好了. 功能 将小说取回,去除HTML标签 记录已爬过 ...

  2. Azure 认知服务 (2) 计算机视觉API - 分析图像

    <Windows Azure Platform 系列文章目录> 在上一节内容中,笔者介绍了微软认知服务的概览. 在本节中,笔者将详细介绍微软认知服务中的一种:计算机视觉 (Computer ...

  3. 编写自己的Nmap(NSE)脚本

    编写自己的Nmap脚本 一.介绍 在上一篇文章Nmap脚本引擎原理中我们介绍了基本的NSE知识,这篇文章介绍如何基于Nmap框架编写简单的NSE脚本文件,下一篇文章,Nmap脚本文件分析(AMQP协议 ...

  4. java IO文件操作简单基础入门例子,IO流其实没那么难

    IO是JAVASE中非常重要的一块,是面向对象的完美体现,深入学习IO,你将可以领略到很多面向对象的思想.今天整理了一份适合初学者学习的简单例子,让大家可以更深刻的理解IO流的具体操作. 1.文件拷贝 ...

  5. 如何解决wamp中数据库读取数据是???的情况?

    数据库中数据正常,但是从数据库读取出的数据在网页中显示时是???,该怎么办呢? 左键点击托盘区的WampServer图标,选择Mysql--my.ini,就会打开配置文件 1.在[client]段落增 ...

  6. CSS3学习系列之选择器(四)

    使用选择器来插入文字 css2中,使用before选择器在元素前面插入内容,使用after选择器在元素后面插入内容,在选择器的content属性中定义要插入的内容.将content属性值设定为none ...

  7. ionic 中关于日期的转换格式

    //在HTML页面上{{ 2015-12-07T15:59:59.000Z | date }} //结果:December 7, 2015 {{ 2015-12-07T15:59:59.000Z | ...

  8. 在C#中初遇Socket - 2

    后期项目实战:多人在线聊天室 源码位置:https://git.oschina.net/z13qu/BlogProjects 前言 第一篇主要对Socket有个基本认识,实现初始化,发送.接受消息:本 ...

  9. 如何成为一名JAVAEE软件工程师?(前言)

    笔者将会整理出一整套成为一个JAVAEE工程师的学习路线和资料.欢迎同行和网友们订阅或指正.不定期更新.         笔者在软件工作做了7年java开发,开发过ERP,CRM等应用系统并担任过项目 ...

  10. 技术分析 | 新型勒索病毒Petya如何对你的文件进行加密

    6月27日晚间,一波大规模勒索蠕虫病毒攻击重新席卷全球. 媒体报道,欧洲.俄罗斯等多国政府.银行.电力系统.通讯系统.企业以及机场都不同程度的受到了影响. 阿里云安全团队第一时间拿到病毒样本,并进行了 ...