Longest Common Substring

Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37 Accepted Submission(s): 28
 
Problem Description
Given two strings, you have to tell the length of the Longest Common Substring of them.

For example:
str1 = banana
str2 = cianaic

So the Longest Common Substring is "ana", and the length is 3.

 
Input
The input contains several test cases. Each test case contains two strings, each string will have at most 100000 characters. All the characters are in lower-case.

Process to the end of file.

 
Output
For each test case, you have to tell the length of the Longest Common Substring of them.
 
Sample Input
banana
cianaic
 
Sample Output
3
 
Author
Ignatius.L
 
/*----------------------------------------------
File: F:\ACM源代码\数据结构--后缀数组\Longest_Common_Substring.cpp
Date: 2017/5/30 16:55:36
Author: LyuCheng
----------------------------------------------*/
/*
题意:最长公共子序列 思路:问题很多,DP基本不用考虑,因为时间复杂度空间复杂度都不允许,NlogN的算法也不行,最坏的情况
转化成LIS的数组是1e10空间复杂的不允许,所以只能利用后缀数组的性质,将两个连接,然后前后两个
前缀在两个不同的字符串中的时候,更新height的值,因为后缀加前缀,刚好是公共子序列
*/
#include <bits/stdc++.h>
#define MAXN 100005
using namespace std;
char s1[MAXN],s2[MAXN];
/****************************************后缀数组模板****************************************/
const int maxn=+;
struct SuffixArray
{
char s[maxn];
int sa[maxn],rank[maxn],height[maxn];
int t1[maxn],t2[maxn],c[maxn],n;
int dmin[maxn][];
void build_sa(int m)
{
int i,*x=t1,*y=t2;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[i]=s[i]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[i]]]=i;
for(int k=;k<=n;k<<=)
{
int p=;
for(i=n-k;i<n;i++) y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=k) y[p++]=sa[i]-k;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[y[i]]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[y[i]]]] = y[i];
swap(x,y);
p=,x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]= y[sa[i]]==y[sa[i-]]&&y[sa[i]+k]==y[sa[i-]+k]? p-:p++;
if(p>=n) break;
m=p;
}
}
void build_height()//n不能等于1,否则出BUG
{
int i,j,k=;
for(i=;i<n;i++)rank[sa[i]]=i;
for(i=;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
}
void initMin()
{
for(int i=;i<=n;i++) dmin[i][]=height[i];
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<=n;i++)
dmin[i][j]=min(dmin[i][j-] , dmin[i+(<<(j-))][j-]);
}
int RMQ(int L,int R)//取得范围最小值
{
int k=;
while((<<(k+))<=R-L+)k++;
return min(dmin[L][k] , dmin[R-(<<k)+][k]);
}
int LCP(int i,int j)//求后缀i和j的LCP最长公共前缀
{
int L=rank[i],R=rank[j];
if(L>R) swap(L,R);
L++;//注意这里
return RMQ(L,R);
}
}sa;
/****************************************后缀数组模板****************************************/ int main(){
// freopen("in.txt","r",stdin);
while(scanf("%s%s",s1,s2)!=EOF){
int n=strlen(s1);
int m=strlen(s2);
for(int i=;i<n;i++){
sa.s[i]=s1[i];
}
sa.s[n]='$';
for(int i=n;i<n+m;i++){
sa.s[i]=s2[i-n];
}
sa.n=m+n+;
sa.build_sa(MAXN);
sa.build_height();
int maxLCS=-;
for(int i=;i<m+n+;i++){
if(i==){
maxLCS=max(maxLCS,sa.height[i]);
}else{
if((sa.sa[i]-n)*(sa.sa[i-]-n)<)//保证两后缀是来自不同的字符串的
maxLCS=max(maxLCS,sa.height[i]);
}
}
printf("%d\n",maxLCS);
}
return ;
}

Longest Common Substring(最长公共子序列)的更多相关文章

  1. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

  2. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  3. LCS修改版(Longest Common Subsequence 最长公共子序列)

    题目描述 作为一名情报局特工,Nova君(2号)有着特殊的传达情报的技巧.为了避免被窃取情报,每次传达时,他都会发出两句旁人看来意义不明话,实际上暗号已经暗含其中.解密的方法很简单,分别从两句话里删掉 ...

  4. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  5. LCS(Longest Common Subsequence)最长公共子序列

    最长公共子序列(LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题.这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置 .最长公共子序列问题是 ...

  6. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  7. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  8. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  9. Common Subsequence--poj1458(最长公共子序列)

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43211   Accepted: 17 ...

  10. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

随机推荐

  1. 使用Pano2VR 切割图片

    图片转换好之后得到一组立方体面片.

  2. Linux Ubuntu从零开始部署web环境及项目 -----tomcat+jdk+mysql (二)

    上一篇介绍如何在linux系统下搭建ssh环境 这篇开始将如何搭建web服务器 1,下载文件 在官网下载好 tomcat.jdk.mysql的linux压缩包 后缀名为.tar.gz 并通过xftp上 ...

  3. Thread.Join 和 Task.Wait 方法

    这两个方法 可以说是类似的功能,都是对当前任务进行等待阻塞,执行完毕后再进行后续处理 talk is cheap, show you code,下面一个是异步执行,一个是加了阻塞,可以对比不同执行结果 ...

  4. c++builder中 扩展c++的关键字 : _published _automated Get/Set指令 _fastcall

    C++Builder为C++增加了许多关键字,以适应其快速应用开发(RAD)环境.包括关键字和Get/Set指令. 1._published类似publich权限范围,_published像publi ...

  5. 调试 ASP.NET Core 2.0 源代码

    在Visual Studio 2017中可以通过符号以及源链接,非常方便对 ASP.NET Core 2.0中源代码进行调试.在这篇文章中,我们将重点介绍如何使用源链接对ASP.NET Core源进行 ...

  6. Finding LCM (最小公倍数)

    Finding LCM Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu [Submit]   ...

  7. C# 中函数内定义函数的委托方法

    //定义委托方法Action(无返回值)Func(有返回值) //无返回值委托 Action<string> SetKeyAndValue = delegate(string key) { ...

  8. javascript 三种弹出对话框

    第一种:alert()方法 第二种:confirm()方法 返回一个布尔值,根据返回的值可以执行相应操作. 第三种: prompt()方法 返回输入的消息,或者其默认值提示框经常用于提示用户在进入页面 ...

  9. RESTful API 架构解读

    RESTful API 架构解读 首先我们还是先介绍下 RESTful api 的来龙去脉. 首先, RESTful (下文都简称 RESTful api 为 RESTful ) 1.RESTful ...

  10. elasticsearch单例模式连接

    import java.net.InetAddress;import org.elasticsearch.client.transport.TransportClient;import org.ela ...