Longest Common Substring

Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37 Accepted Submission(s): 28
 
Problem Description
Given two strings, you have to tell the length of the Longest Common Substring of them.

For example:
str1 = banana
str2 = cianaic

So the Longest Common Substring is "ana", and the length is 3.

 
Input
The input contains several test cases. Each test case contains two strings, each string will have at most 100000 characters. All the characters are in lower-case.

Process to the end of file.

 
Output
For each test case, you have to tell the length of the Longest Common Substring of them.
 
Sample Input
banana
cianaic
 
Sample Output
3
 
Author
Ignatius.L
 
/*----------------------------------------------
File: F:\ACM源代码\数据结构--后缀数组\Longest_Common_Substring.cpp
Date: 2017/5/30 16:55:36
Author: LyuCheng
----------------------------------------------*/
/*
题意:最长公共子序列 思路:问题很多,DP基本不用考虑,因为时间复杂度空间复杂度都不允许,NlogN的算法也不行,最坏的情况
转化成LIS的数组是1e10空间复杂的不允许,所以只能利用后缀数组的性质,将两个连接,然后前后两个
前缀在两个不同的字符串中的时候,更新height的值,因为后缀加前缀,刚好是公共子序列
*/
#include <bits/stdc++.h>
#define MAXN 100005
using namespace std;
char s1[MAXN],s2[MAXN];
/****************************************后缀数组模板****************************************/
const int maxn=+;
struct SuffixArray
{
char s[maxn];
int sa[maxn],rank[maxn],height[maxn];
int t1[maxn],t2[maxn],c[maxn],n;
int dmin[maxn][];
void build_sa(int m)
{
int i,*x=t1,*y=t2;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[i]=s[i]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[i]]]=i;
for(int k=;k<=n;k<<=)
{
int p=;
for(i=n-k;i<n;i++) y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=k) y[p++]=sa[i]-k;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[y[i]]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[y[i]]]] = y[i];
swap(x,y);
p=,x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]= y[sa[i]]==y[sa[i-]]&&y[sa[i]+k]==y[sa[i-]+k]? p-:p++;
if(p>=n) break;
m=p;
}
}
void build_height()//n不能等于1,否则出BUG
{
int i,j,k=;
for(i=;i<n;i++)rank[sa[i]]=i;
for(i=;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
}
void initMin()
{
for(int i=;i<=n;i++) dmin[i][]=height[i];
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<=n;i++)
dmin[i][j]=min(dmin[i][j-] , dmin[i+(<<(j-))][j-]);
}
int RMQ(int L,int R)//取得范围最小值
{
int k=;
while((<<(k+))<=R-L+)k++;
return min(dmin[L][k] , dmin[R-(<<k)+][k]);
}
int LCP(int i,int j)//求后缀i和j的LCP最长公共前缀
{
int L=rank[i],R=rank[j];
if(L>R) swap(L,R);
L++;//注意这里
return RMQ(L,R);
}
}sa;
/****************************************后缀数组模板****************************************/ int main(){
// freopen("in.txt","r",stdin);
while(scanf("%s%s",s1,s2)!=EOF){
int n=strlen(s1);
int m=strlen(s2);
for(int i=;i<n;i++){
sa.s[i]=s1[i];
}
sa.s[n]='$';
for(int i=n;i<n+m;i++){
sa.s[i]=s2[i-n];
}
sa.n=m+n+;
sa.build_sa(MAXN);
sa.build_height();
int maxLCS=-;
for(int i=;i<m+n+;i++){
if(i==){
maxLCS=max(maxLCS,sa.height[i]);
}else{
if((sa.sa[i]-n)*(sa.sa[i-]-n)<)//保证两后缀是来自不同的字符串的
maxLCS=max(maxLCS,sa.height[i]);
}
}
printf("%d\n",maxLCS);
}
return ;
}

Longest Common Substring(最长公共子序列)的更多相关文章

  1. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

  2. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  3. LCS修改版(Longest Common Subsequence 最长公共子序列)

    题目描述 作为一名情报局特工,Nova君(2号)有着特殊的传达情报的技巧.为了避免被窃取情报,每次传达时,他都会发出两句旁人看来意义不明话,实际上暗号已经暗含其中.解密的方法很简单,分别从两句话里删掉 ...

  4. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  5. LCS(Longest Common Subsequence)最长公共子序列

    最长公共子序列(LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题.这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置 .最长公共子序列问题是 ...

  6. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  7. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  8. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  9. Common Subsequence--poj1458(最长公共子序列)

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43211   Accepted: 17 ...

  10. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

随机推荐

  1. PHPFastCGI进程管理器PHP-FPM详解

    PHP-FPM是一个PHPFastCGI进程管理器,是只用于PHP的.      PHP-FPM其实是PHP源代码的一个补丁,旨在将FastCGI进程管理整合进PHP包中.必须将它patch到你的PH ...

  2. ThinkPHP中:RBAC权限控制的实习步骤

    使用版本ThinkPHP3.1.3 第一步,建表及数据 第二步,建关联模型 第三步,控制器使用关联模型.配置文件 第四步,模板显示数据 第一步,建表及数据 在数据库中,建立一个companysvn数据 ...

  3. Linux学习——shell编程之运算符

    shell编程之运算符 一:shell中常见算术运算符号和优先级 二:算术运算符 Shell 变量:是弱类型!不能进行加减乘除!比较麻烦! 例子 :shell变量弱类型 a=11 b=22 echo ...

  4. Kafka快速上手(2017.9官方翻译)

    为了帮助国人更好了解.上手kafka,特意翻译.修改了个文档.官方Wiki : http://kafka.apache.org/quickstart 快速开始 本教程假定您正在开始新鲜,并且没有现有的 ...

  5. UI自动化测试简介及Selenium工具的介绍和环境搭建

    自动化测试简介 1.1何为自动化测试? 是把以人为驱动的测试转化为机器执行的一种过程,它是一种以程序测试程序的过程.换言之,就是以程序实现的方式来代替手工测试. 1.2自动化测试分类 分为功能自动化测 ...

  6. K相邻算法

    刚开始学习机器学习,先跟这<机器学习实战>学一些基本的算法 ----------------------------------分割线--------------------------- ...

  7. MVVM前后分离轻量级框架应用juicer和doT.js

    前言      前后端开发分的越来越细化,为了方便前端工程师更好的调试后端工程师嵌套的代码,前后分离技术就出现了,简单理解其实就是Ajax异步将数据提供给JavaScript,由JavaScript进 ...

  8. HDU1197 Specialized Four-Digit Numbers

    进制转化 hdu1197 #include<cstdio> #include<cstdlib> #include<iostream> #include<mem ...

  9. spring cloud+dotnet core搭建微服务架构:配置中心(四)

    前言 我们项目中有很多需要配置的地方,最常见的就是各种服务URL地址,这些地址针对不同的运行环境还不一样,不管和打包还是部署都麻烦,需要非常的小心.一般配置都是存储到配置文件里面,不管多小的配置变动, ...

  10. 扩展js,实现c#中的string.format方便拼接字符串

    //"{0}-{1}-{2}".format("xx","yy","zz") //显示xx-yy-zz String.p ...