关于NIM博弈结论的证明

NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人即获胜(也就是说不能取得人失败)

假设这两个人A,B,并且有若干堆物品,A先手,那么A必胜,还是B必胜,必胜的策略是什么?

为了更容易的理解,现在考虑一种特殊情况,如果只有两堆物品,如果两堆物品相同的话,A先从一堆中取走x个物品,那么B只需要从另一堆中同样取走x个物品保证两堆物品的数量相同,那么这样就能保证B获得最后的胜利,这样就得到必胜的策略,保证每堆物品的数量是相同的。

这种2-堆的NIM博弈,也可以扩展到k-堆的NIM博弈中,任意一个数都可以表示成n个二进制的加和,例如 57=2^0+2^3+2^4+2^5,我们可以将这堆物品(57个)是有2^0个,2^3个,2^4个,2^5个这些子堆组成的,显然如果最后每种 子堆的数量是偶数,那么先手必败,如果是奇数那么先手必胜,这就是如果n堆物品的异或为零,那么每种 子堆的数量就是偶数,先手必败,如果不为零,那么每种 子堆的数量就是奇数,先手必胜,到此NIM博弈结论证明完毕。

关于NIM博弈结论的证明的更多相关文章

  1. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  2. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  3. 博弈论-一堆nim博弈合在一起

    今天A了张子苏大神的的题,感觉神清气爽. 一篇对于多层nim博弈讲的很透彻的博文:http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617 我来 ...

  4. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  5. Multi-Anti-Nim游戏结论及证明

    一.定义 Anti-Nim 游戏: 取走最后一个石子的玩家输 Multi-Nim游戏: 每次取完后可以将一堆石子分为多堆,不能存在空堆 Multi-Anti-Nim游戏: 每次取完后可以将一堆石子分为 ...

  6. hdu 1907(Nim博弈)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  7. hdu2509Be the Winner(反nim博弈)

    Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. hdu1907John(反nim博弈)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  9. 取火柴游戏||Nim博弈

    好久之前看的sg函数了 好像就记住一个nim博弈qwq 第一次啊看的时候很迷,现在感觉可以了qwq 首先我们来看一个其他的游戏.(以下游戏只有两个人参与,且足够聪明) 两个人在一张圆形的桌子上放等大的 ...

随机推荐

  1. Thinkphp3.2版本使用163邮箱发(验证码)邮件

    今天忽然想写一个用户修改密码的功能,又没有短信接口,只能选择用邮箱发送验证码啦,穷啊,没办法,哈哈,以下为正文. ------------------------------------------- ...

  2. Oculus关于Internal Error:OVR53225466报错解决方法

    安装Oculus过程中可能会出现Internal Error:OVR53225466报错提示,如附件所示: 解决方法:修改hosts文件 操作方法: (1)以管理员方式打开记事本: (2)打开C:\W ...

  3. 代理模式与java中的动态代理

    前言    代理模式又分为静态代理与动态代理,其中动态代理是Java各大框架中运用的最为广泛的一种模式之一,下面就用简单的例子来说明静态代理与动态代理. 场景    李雷是一个唱片公司的大老板,很忙, ...

  4. 基于NIO的Socket通信

    一.NIO模式的基本原理: 服务端: 首先,服务端打开一个通道(ServerSocketChannel),并向通道中注册一个通道调度器(Selector):然后向通道调度器注册感兴趣的事件Select ...

  5. hdu1166 敌兵布阵

    敌兵布阵 C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动 ...

  6. http://codeforces.com/contest/536/problem/B

    B. Tavas and Malekas time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. validators配置要点及No result defined for action报错解决方案

    在做JavaEE SSH项目时,接触到validators验证. 需要了解validators配置,或者遇到No result defined for action 这个错误时,可查阅本文得到有效解决 ...

  8. 前端基础之初识 HTML

    HTML HTML(Hypertext Markup Language)即超文本标记语言,是WWW的描述语言.设计HTML语言的目的是为了能把存放在一台电脑中的文本或图形与另一台电脑中的文本或图形方便 ...

  9. JS脚本检查密码强度

    <html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Con ...

  10. Tensorflow卷积神经网络

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. ...