We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
很简单直接暴力分类,类别也不是很多,有一个坑点就是double型的0乘负数会变成负0,太坑了!!
这里放一下测试代码
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const int N=,maxn=,inf=0x3f3f3f3f3f; int main()
{
double x=0.0,y=x*(-);
printf("%.2f\n",y);
if(y==)y=fabs(y);
printf("%.2f\n",y);
return ;
}
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
int x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,y1,x2,y2,x3,y3,x4,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((y4-y3)*(x2-x1)==(y2-y1)*(x4-x3))
{
if((y3-y1)*(x2-x1)!=(y2-y1)*(x3-x1))
cout<<"NONE"<<endl;
else
cout<<"LINE"<<endl;
}
else
{
double x,y;
if(x2==x1)
{
x=x1;
y=y3+(x-x3)*(y4-y3)/(x4-x3);
}
else if(x3==x4)
{
x=x3;
y=y1+(x-x1)*(y2-y1)/(x2-x1);
}
else
{
x=(y3-y1+x1*(y2-y1)/(x2-x1)-x3*(y4-y3)/(x4-x3))/((y2-y1)/(x2-x1)-(y4-y3)/(x4-x3));
y=(x-x1)*(y2-y1)/(x2-x1)+y1;
}
if(x==)x=fabs(x);
if(y==)y=fabs(y);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}

又看了一下网上的题解发现有更简单的叉积判断

首先判断斜率是非相同还是用公式直接来(x4-x3)*(y2-y1)==(y4-y3)*(x2-x1)

然后用叉积(x2-x1)*(y3-y1)==(y2-y1)*(x3-x1)判断x3是不是在x1,x2这条线上是的话就是LINE,否则就是NONE

最后叉积计算交点:

设交点(x0,y0)

(x2-x1)*(y0-y1)-(y2-y1)*(x0-x1)=0;

(x4-x3)*(y0-y3)-(y4-y3)*(x0-x3)=0;

化简可得:

(y1-y2)*x0+(x2-x1)*y0+x1*y2-x2*y1=0;

(y3-y4)*x0+(x4-x3)*y0+x3*y4-x4*y3=0;

建立二元一次方程:

a1*x0+b1*y0+c1=0;

a2*x0+b2*y0+c2=0;

解得:

x0=(c2*b1-c1*b2)/(b2*a1-b1*a2);

y0=(a2*c1-a1*c2)/(b2*a1-b1*a2);

带入就好了,以下是新方法 的ac代码:

#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
double x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,x2,x3,x4,y1,y2,y3,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((x4-x3)*(y2-y1)==(y4-y3)*(x2-x1))//斜率判断
{
if((x2-x1)*(y3-y1)==(y2-y1)*(x3-x1))cout<<"LINE"<<endl;//用叉积判断共线
else cout<<"NONE"<<endl;
}
else
{
double a1=y1-y2,b1=x2-x1,c1=x1*y2-x2*y1;
double a2=y3-y4,b2=x4-x3,c2=x3*y4-x4*y3;
double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}

poj1269计算几何直线和直线的关系的更多相关文章

  1. POJ1269求两个直线的关系平行,重合,相交

    依旧是叉积的应用 判定重合:也就是判断给定的点是否共线的问题——叉积为0 if(!cross(p1,p2,p3) && !cross(p1,p2,p4))printf("LI ...

  2. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  3. 计算几何——线段和直线判交点poj3304

    #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...

  4. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  5. BZOJ 1007: [HNOI2008]水平可见直线 平面直线

    1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...

  6. poj 2318 TOYS(计算几何 点与线段的关系)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12015   Accepted: 5792 Description ...

  7. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  8. hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)

    Mirror and Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. Intersecting Lines (计算几何基础+判断两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...

随机推荐

  1. MySQL常用函数及日期

    一.数学函数 数学函数主要用于处理数字,包括整型.浮点数等. ABS(x) 返回x的绝对值 SELECT ABS(-1) -- 返回1 CEIL(x),CEILING(x) 返回大于或等于x的最小整数 ...

  2. 【2017-03-20】HTML基础知识、文字标记、图片标记、空格换行、表格、表格嵌套及布局、超链接

    一.HTML基础知识 HTML: 网站(站点) - 网页 网站是由一个或者多个网页组合起来的 HTML作为文件后缀名,可以把文件变为网页 HTML是一门编程语言的名字:超文本标记语言 超越了文字的范畴 ...

  3. Redhat

    vm1 port:192.168.210.102 user:root;pwd:123456 user:openflowpwd:openflowKkm09!q esx4.1 server 安装一.修改I ...

  4. WINFROM 无边框窗体的移动和改变大小

    因为去掉了边框  移动和调整大小都用不了了,可以调用WIN32的API来实现 1.定义必须常量 ; ; ; ; ; ; const int Guying_HTBOTTOMLEFT = 0x10; ; ...

  5. ubuntu如何进入local、bin目录

    回到home目录,输入命令:cd /usr/local 若要进入bin目录,输入命令:cd /usr/local/bin

  6. EF批量插入(转)

    原作者地址http://blog.csdn.net/zlts000/article/details/46385773 之前做项目的时候,做出来的系统的性能不太好,在框架中使用了EntityFramew ...

  7. Linux下安装Java(JDK8)

    一.文件准备 1.1 文件名称 jdk-8u121-linux-x64.tar.gz 1.2 下载地址 http://www.oracle.com/technetwork/java/javase/do ...

  8. Hive分区(静态分区+动态分区)

    Hive分区的概念与传统关系型数据库分区不同. 传统数据库的分区方式:就oracle而言,分区独立存在于段里,里面存储真实的数据,在数据进行插入的时候自动分配分区. Hive的分区方式:由于Hive实 ...

  9. PL/SQL编程重点语句输出整理

    create or replace procedure pr_mytest is v_test number() :=; v_char varchar2():='数据库'; c_changl cons ...

  10. JQ实战一之烟花

    本次的效果大概为当用户点击网页时,网页下方弹出一个类似烟花的长条条,然后在桌面上散开以达成类似烟花的特效.话不多说先上图. 首先布局,布局很简单 <style> body { backgr ...