poj1269计算几何直线和直线的关系
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
Output
Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
很简单直接暴力分类,类别也不是很多,有一个坑点就是double型的0乘负数会变成负0,太坑了!!
这里放一下测试代码
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const int N=,maxn=,inf=0x3f3f3f3f3f; int main()
{
double x=0.0,y=x*(-);
printf("%.2f\n",y);
if(y==)y=fabs(y);
printf("%.2f\n",y);
return ;
}
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
int x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,y1,x2,y2,x3,y3,x4,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((y4-y3)*(x2-x1)==(y2-y1)*(x4-x3))
{
if((y3-y1)*(x2-x1)!=(y2-y1)*(x3-x1))
cout<<"NONE"<<endl;
else
cout<<"LINE"<<endl;
}
else
{
double x,y;
if(x2==x1)
{
x=x1;
y=y3+(x-x3)*(y4-y3)/(x4-x3);
}
else if(x3==x4)
{
x=x3;
y=y1+(x-x1)*(y2-y1)/(x2-x1);
}
else
{
x=(y3-y1+x1*(y2-y1)/(x2-x1)-x3*(y4-y3)/(x4-x3))/((y2-y1)/(x2-x1)-(y4-y3)/(x4-x3));
y=(x-x1)*(y2-y1)/(x2-x1)+y1;
}
if(x==)x=fabs(x);
if(y==)y=fabs(y);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}
又看了一下网上的题解发现有更简单的叉积判断
首先判断斜率是非相同还是用公式直接来(x4-x3)*(y2-y1)==(y4-y3)*(x2-x1)
然后用叉积(x2-x1)*(y3-y1)==(y2-y1)*(x3-x1)判断x3是不是在x1,x2这条线上是的话就是LINE,否则就是NONE
最后叉积计算交点:
设交点(x0,y0)
(x2-x1)*(y0-y1)-(y2-y1)*(x0-x1)=0;
(x4-x3)*(y0-y3)-(y4-y3)*(x0-x3)=0;
化简可得:
(y1-y2)*x0+(x2-x1)*y0+x1*y2-x2*y1=0;
(y3-y4)*x0+(x4-x3)*y0+x3*y4-x4*y3=0;
建立二元一次方程:
a1*x0+b1*y0+c1=0;
a2*x0+b2*y0+c2=0;
解得:
x0=(c2*b1-c1*b2)/(b2*a1-b1*a2);
y0=(a2*c1-a1*c2)/(b2*a1-b1*a2);
带入就好了,以下是新方法 的ac代码:
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
double x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,x2,x3,x4,y1,y2,y3,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((x4-x3)*(y2-y1)==(y4-y3)*(x2-x1))//斜率判断
{
if((x2-x1)*(y3-y1)==(y2-y1)*(x3-x1))cout<<"LINE"<<endl;//用叉积判断共线
else cout<<"NONE"<<endl;
}
else
{
double a1=y1-y2,b1=x2-x1,c1=x1*y2-x2*y1;
double a2=y3-y4,b2=x4-x3,c2=x3*y4-x4*y3;
double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}
poj1269计算几何直线和直线的关系的更多相关文章
- POJ1269求两个直线的关系平行,重合,相交
依旧是叉积的应用 判定重合:也就是判断给定的点是否共线的问题——叉积为0 if(!cross(p1,p2,p3) && !cross(p1,p2,p4))printf("LI ...
- uva 11178 Morley's Theorem(计算几何-点和直线)
Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...
- 计算几何——线段和直线判交点poj3304
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...
- POJ 1269 - Intersecting Lines 直线与直线相交
题意: 判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- poj 2318 TOYS(计算几何 点与线段的关系)
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12015 Accepted: 5792 Description ...
- UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)
Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...
- hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Intersecting Lines (计算几何基础+判断两直线的位置关系)
题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...
随机推荐
- MySQL常用函数及日期
一.数学函数 数学函数主要用于处理数字,包括整型.浮点数等. ABS(x) 返回x的绝对值 SELECT ABS(-1) -- 返回1 CEIL(x),CEILING(x) 返回大于或等于x的最小整数 ...
- 【2017-03-20】HTML基础知识、文字标记、图片标记、空格换行、表格、表格嵌套及布局、超链接
一.HTML基础知识 HTML: 网站(站点) - 网页 网站是由一个或者多个网页组合起来的 HTML作为文件后缀名,可以把文件变为网页 HTML是一门编程语言的名字:超文本标记语言 超越了文字的范畴 ...
- Redhat
vm1 port:192.168.210.102 user:root;pwd:123456 user:openflowpwd:openflowKkm09!q esx4.1 server 安装一.修改I ...
- WINFROM 无边框窗体的移动和改变大小
因为去掉了边框 移动和调整大小都用不了了,可以调用WIN32的API来实现 1.定义必须常量 ; ; ; ; ; ; const int Guying_HTBOTTOMLEFT = 0x10; ; ...
- ubuntu如何进入local、bin目录
回到home目录,输入命令:cd /usr/local 若要进入bin目录,输入命令:cd /usr/local/bin
- EF批量插入(转)
原作者地址http://blog.csdn.net/zlts000/article/details/46385773 之前做项目的时候,做出来的系统的性能不太好,在框架中使用了EntityFramew ...
- Linux下安装Java(JDK8)
一.文件准备 1.1 文件名称 jdk-8u121-linux-x64.tar.gz 1.2 下载地址 http://www.oracle.com/technetwork/java/javase/do ...
- Hive分区(静态分区+动态分区)
Hive分区的概念与传统关系型数据库分区不同. 传统数据库的分区方式:就oracle而言,分区独立存在于段里,里面存储真实的数据,在数据进行插入的时候自动分配分区. Hive的分区方式:由于Hive实 ...
- PL/SQL编程重点语句输出整理
create or replace procedure pr_mytest is v_test number() :=; v_char varchar2():='数据库'; c_changl cons ...
- JQ实战一之烟花
本次的效果大概为当用户点击网页时,网页下方弹出一个类似烟花的长条条,然后在桌面上散开以达成类似烟花的特效.话不多说先上图. 首先布局,布局很简单 <style> body { backgr ...