We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
很简单直接暴力分类,类别也不是很多,有一个坑点就是double型的0乘负数会变成负0,太坑了!!
这里放一下测试代码
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const int N=,maxn=,inf=0x3f3f3f3f3f; int main()
{
double x=0.0,y=x*(-);
printf("%.2f\n",y);
if(y==)y=fabs(y);
printf("%.2f\n",y);
return ;
}
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
int x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,y1,x2,y2,x3,y3,x4,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((y4-y3)*(x2-x1)==(y2-y1)*(x4-x3))
{
if((y3-y1)*(x2-x1)!=(y2-y1)*(x3-x1))
cout<<"NONE"<<endl;
else
cout<<"LINE"<<endl;
}
else
{
double x,y;
if(x2==x1)
{
x=x1;
y=y3+(x-x3)*(y4-y3)/(x4-x3);
}
else if(x3==x4)
{
x=x3;
y=y1+(x-x1)*(y2-y1)/(x2-x1);
}
else
{
x=(y3-y1+x1*(y2-y1)/(x2-x1)-x3*(y4-y3)/(x4-x3))/((y2-y1)/(x2-x1)-(y4-y3)/(x4-x3));
y=(x-x1)*(y2-y1)/(x2-x1)+y1;
}
if(x==)x=fabs(x);
if(y==)y=fabs(y);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}

又看了一下网上的题解发现有更简单的叉积判断

首先判断斜率是非相同还是用公式直接来(x4-x3)*(y2-y1)==(y4-y3)*(x2-x1)

然后用叉积(x2-x1)*(y3-y1)==(y2-y1)*(x3-x1)判断x3是不是在x1,x2这条线上是的话就是LINE,否则就是NONE

最后叉积计算交点:

设交点(x0,y0)

(x2-x1)*(y0-y1)-(y2-y1)*(x0-x1)=0;

(x4-x3)*(y0-y3)-(y4-y3)*(x0-x3)=0;

化简可得:

(y1-y2)*x0+(x2-x1)*y0+x1*y2-x2*y1=0;

(y3-y4)*x0+(x4-x3)*y0+x3*y4-x4*y3=0;

建立二元一次方程:

a1*x0+b1*y0+c1=0;

a2*x0+b2*y0+c2=0;

解得:

x0=(c2*b1-c1*b2)/(b2*a1-b1*a2);

y0=(a2*c1-a1*c2)/(b2*a1-b1*a2);

带入就好了,以下是新方法 的ac代码:

#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double eps=1e-;
const int N=,maxn=,inf=0x3f3f3f3f; struct point{
double x,y;
};
struct line{
point a,b;
}l[N]; int main()
{
int t;
double x1,x2,x3,x4,y1,y2,y3,y4;
cin>>t;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
while(t--){
cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
if((x4-x3)*(y2-y1)==(y4-y3)*(x2-x1))//斜率判断
{
if((x2-x1)*(y3-y1)==(y2-y1)*(x3-x1))cout<<"LINE"<<endl;//用叉积判断共线
else cout<<"NONE"<<endl;
}
else
{
double a1=y1-y2,b1=x2-x1,c1=x1*y2-x2*y1;
double a2=y3-y4,b2=x4-x3,c2=x3*y4-x4*y3;
double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
return ;
}

poj1269计算几何直线和直线的关系的更多相关文章

  1. POJ1269求两个直线的关系平行,重合,相交

    依旧是叉积的应用 判定重合:也就是判断给定的点是否共线的问题——叉积为0 if(!cross(p1,p2,p3) && !cross(p1,p2,p4))printf("LI ...

  2. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  3. 计算几何——线段和直线判交点poj3304

    #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...

  4. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  5. BZOJ 1007: [HNOI2008]水平可见直线 平面直线

    1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...

  6. poj 2318 TOYS(计算几何 点与线段的关系)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12015   Accepted: 5792 Description ...

  7. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  8. hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)

    Mirror and Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. Intersecting Lines (计算几何基础+判断两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...

随机推荐

  1. Https握手协议以及证书认证

    1. 什么是https Https = http + 加密 + 认证 https是对http的安全强化,在http的基础上引入了加密和认证过程.通过加密和认证构建一条安全的传输通道.所以https可以 ...

  2. python计算文件夹大小(linux du命令 简化版)

    C盘又满了,怎么办?用了一些垃圾清理软件(或者bat脚本),但是还是不理想,那么具体哪些文件夹下面有巨大的文件呢?windows并不能通过详细信息看到每个文件夹的大小(PS:这里所谓的文件夹的大小是指 ...

  3. 利用python的爬虫技术爬去糗事百科的段子

    初次学习爬虫技术,在知乎上看了如何爬去糗事百科的段子,于是打算自己也做一个. 实现目标:1,爬取到糗事百科的段子 2,实现每次爬去一个段子,每按一次回车爬取到下一页 技术实现:基于python的实现, ...

  4. iOS开发之UINavigationController

    1.概述: 利用UINavigationController,可以轻松地管理多个控制器,轻松完成控制器之间的切换,典型例子就是系统自带的“设置”应用. 2.UINavigationController ...

  5. JavaScript高级程序设计---学习笔记(一)

    今天,2017.3.17开始利用课余时间仔细学习<JavaScript高级程序设计>,将需要掌握的知识点记录下来,争取把书里的所有代码敲一遍并掌握. 1.标识符命名最好是第一个字母小写,剩 ...

  6. Ubuntu安装Nginx+PHP7.0.4+MySQL5.6

    安装Nginx 1.首先添加nginx_signing.key(必须,否则出错) $ wget http://nginx.org/keys/nginx_signing.key $ sudo apt-k ...

  7. Excel 按模板格式导出

    最近遇到一个问题,就是导出数据的时候需要自定义的表头,如图 如果自己用代码写表头的话,可能会有点复杂,而且代码量很多,所以我就想了一个办法,直接在Excel里面把表头定义好,然后把数据写入Excel模 ...

  8. Cassandra存储time series类型数据时的内部数据结构?

        因为我一直想用Cassandra来存储我们的数字电表中的数据,按照之前的文章(getting-started-time-series-data-modeling)的介绍,Cassandra真的 ...

  9. 老李分享:性能测试你不应该只知道loadrunner(1)

    老李分享:性能测试你不应该只知道loadrunner(1)   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.poptest测试 ...

  10. 采用Spring AOP+Log4j记录项目日志

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/6567672.html 项目日志记录是项目开发.运营必不可少的内容,有了它可以对系统有整体的把控,出现任何问题 ...