Python序列化和反序列化
Python序列化和反序列化
通过将对象序列化可以将其存储在变量或者文件中,可以保存当时对象的状态,实现其生命周期的延长。并且需要时可以再次将这个对象读取出来。Python中有几个常用模块可实现这一功能。
pickle模块
存储在变量中
dumps(obj)
返回存入的字节
dic = {'age': 23, 'job': 'student'}
byte_data = pickle.dumps(dic)
# out -> b'\x80\x03}q\x00(X\x03\x00\x00\...'
print(byte_data)
读取数据
数据以字节保存在了byte_data
变量中,需要再次使用的时候使用loads
函数就行了。
obj = pickle.loads(byte_data)
print(obj)
存储在文件中
也可以存在文件中,使得对象持久化。使用的是dump
和load
函数,注意和上面的区别,少了s
。由于pickle写入的是二进制数据,所以打开方式需要以wb
和rb
的模式。
# 序列化
with open('abc.pkl', 'wb') as f:
dic = {'age': 23, 'job': 'student'}
pickle.dump(dic, f)
# 反序列化
with open('abc.pkl', 'rb') as f:
aa = pickle.load(f)
print(aa)
print(type(aa)) # <class 'dict'>
序列化用户自定义对象
假如我写了个类叫做Person
class Person:
def __init__(self, name, age, job):
self.name = name
self.age = age
self.job = job
def work(self):
print(self.name, 'is working...')
pickle当然也能写入,不仅可以写入类本身,也能写入它的一个实例。
# 将实例存储在变量中,当然也能存在文件中
a_person = Person('abc', 22, 'waiter')
person_abc = pickle.dumps(a_person)
p = pickle.loads(person_abc)
p.work()
# 将类本身存储在变量中,loads的时候返回类本身,而非它的一个实例
class_Person = pickle.dumps(Person)
Person = pickle.loads(class_Person)
p = Person('Bob', 23, 'Student')
p.work()
# 下面这个例子演示的就是将类存储在文件中
# 序列化
with open('person.pkl', 'wb') as f:
pickle.dump(Person, f)
# 反序列化
with open('person.pkl', 'rb') as f:
Person = pickle.load(f)
aa = Person('gg', 23, '6')
aa.work()
json模块
pickle可以很方便地序列化所有对象。不过json作为更为标准的格式,具有更好的可读性(pickle是二进制数据)和跨平台性。是个不错的选择。
json使用的四个函数名和pickle一致。
序列化为字符串
dic = {'age': 23, 'job': 'student'}
dic_str = json.dumps(dic)
print(type(dic_str), dic_str)
# out: <class 'str'> {"age": 23, "job": "student"}
dic_obj = json.loads(dic_str)
print(type(dic_obj), dic_obj)
# out: <class 'dict'> {'age': 23, 'job': 'student'}
可以看到,dumps
函数将对象转换成了字符串。loads
函数又将其恢复成字典。
存储为json文件
也可以存储在json文件中
dic = {'age': 23, 'job': 'student'}
with open('abc.json', 'w', encoding='utf-8') as f:
json.dump(dic, f)
with open('abc.json', encoding='utf-8') as f:
obj = json.load(f)
print(obj)
存储自定义对象
还是上面的Person对象。如果直接序列化会报错
aa = Person('Bob', 23, 'Student')
with open('abc.json', 'w', encoding='utf-8') as f:
json.dump(aa, f) # 报错
Object of type 'Person' is not JSON serializable
此时dump
函数里传一个参default
就可以了,这个参数接受一个函数,这个函数可以将对象转换为字典。
写一个就是了
def person2dict(person):
return {'name': person.name,
'age': person.age,
'job': person.job}
这样返回的就是一个字典了,对象实例有个方法可以简化这一过程。直接调用实例的__dict__
。例如
print(aa.__dict) # {'name': 'Bob', 'age': 23, 'job': 'Student'}
很方便。
同时在读取的时候load出来的是一个字典,再转回对象就可,同样需要一个object_hook
参数,该参数接收一个函数,用于将字典转为对象。
def dict2person(dic):
return Person(dic['name'], dic['age'], dic['job'])
于是完整的程序应该写成下面这样
with open('abc.json', 'w', encoding='utf-8') as f:
json.dump(aa, f, default=person2dict)
with open('abc.json', encoding='utf-8') as f:
obj = json.load(f, object_hook=dict2person)
print(obj.name, obj.age, obj.job)
obj.work()
由于可以使用__dict__
代替person2dict
函数,再使用lambda函数简化。
with open('abc.json', 'w', encoding='utf-8') as f:
json.dump(aa, f, default=lambda obj: obj.__dict__)
以上是存储到文件,存储到变量也是类似操作。
不过就我现在所学,不知道如何像pickle一样方便的将我们自定义的类本身使用json序列化,或许要用到其他扩展函数。以后用到了再说。
shelve模块
还有一个模块,不太常用,通常使用一个open
就好。shelve以键值对的形式存储数据。
with shelve.open('aa') as f:
f['person'] = {'age': 23, 'job': 'student'}
f['person']['age'] = 44 # 这里试图改变原来的年龄23
f['numbers'] = [i for i in range(10)]
with shelve.open('aa') as f:
person = f['person']
print(person) # {'age': 23, 'job': 'student'}
nums = f['numbers']
print(nums) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
文件不要有后缀名,在windows下会生成aa.bak, aa.dat, aa.dir
三个文件(有点多)。其中bak和dir文件是可以查看的(貌似两个文件内容一样)在下面这个例子中生成这样的数据。
'person', (0, 44)
'numbers', (512, 28)
允许写回--writeback
有个细节,我们读取键person
时候,发现age还是23岁,f['person']['age'] = 44
后并没有变成44。下面的写法
with shelve.open('aa', writeback=True) as f:
dic = {'age': 23, 'job': 'student'}
f['person'] = dic
dic['age'] = 44
f['person'] = dic
相当于赋值了两次,这种方法是可以改变值的。
默认情况下直接使用f['person']
改变其中的值之后,不会更新已存储的值,也就是没有把更新写回到文件,即使是文件被close后。如果有此需要,在open函数中添加一个参数writeback=True
。再次运行下看看年龄就被改变了。
写入自定义对象
依然使用上面的Person对象
with shelve.open('aa') as f:
f['class'] = Person
# 写入类本身
with shelve.open('aa') as f:
Person = f['class']
a = Person('Bob', 23, 'Student')
a.work()
上面的例子说明shelve也可以序列化类本身。当然序列化实例肯定可以。
with shelve.open('aa') as f:
a = Person('God', 100, 'watch')
f['class'] = a
with shelve.open('aa') as f:
god = f['class']
god.work()
注意,由于我们使用with open打开,故不用写close语句,此模块是有close
函数的,如果不是with方法打开的一定要记得主动close。
by @sunhaiyu
2017.6.27
Python序列化和反序列化的更多相关文章
- python序列化与反序列化(json与pickle)
在python中,序列化可以理解为将python中对象的编码格式转换为json(pickle)格式的字符串,而反序列化可以 理解为将json(pickle)格式的字符串转换为python中对象的编码格 ...
- Python—序列化和反序列化模块(json、pickle和shelve)
什么是序列化 我们把对象(或者变量)从内存中变为可存储或者可传输的过程称为序列化.在python中为pickling,在其他语言中也被称之为serialization,marshalling,flat ...
- Python 序列化与反序列化
序列化是为了将内存中的字典.列表.集合以及各种对象,保存到一个文件中(字节流).而反序列化是将字节流转化回原始的对象的一个过程. json库 序列化:json.dumps() 反序列化:json.lo ...
- python序列化与反序列化(json、pickle)-(五)
1.什么是序列化&反序列化? 序列化:将字典.列表.类的实例对象等内容转换成一个字符串的过程. 反序列化:将一个字符串转换成字典.列表.类的实例对象等内容的过程 PS:Python中常见的数据 ...
- python 序列化和反序列化
概念 序列化: 将对象的状态信息转换为可以存储或传输的形式的过程.就是把对象转换成字符串的过程 反序列化: 把字符串转换成python可以识别的数据类型对象的过程 应用 #数据存储 #网络传输 模块 ...
- python 序列化,反序列化
附: pickle 有大量的配置选项和一些棘手的问题.对于最常见的使用场景,你不需要去担心这个,是如果你要在一个重要的程序中使用pickle 去做序列化的话,最好去查阅一下官方文档. https:// ...
- Python序列化与反序列化-json与pickle
Python序列化与反序列化-json与pickle 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.json的序列化方式与反序列化方式 1>.json序列化 #!/usr ...
- Python序列化和反序列化vsJSON
# -*- coding: utf-8 -* """没有嵌套类的类 author: Jill usage: """ import json ...
- Python库:序列化和反序列化模块pickle介绍
1 前言 在“通过简单示例来理解什么是机器学习”这篇文章里提到了pickle库的使用,本文来做进一步的阐述. 通过简单示例来理解什么是机器学习 pickle是python语言的一个标准模块,安装pyt ...
随机推荐
- python多线程几种方法实现
python多线程编程 Python多线程编程中常用方法: 1.join()方法:如果一个线程或者在函数执行的过程中调用另一个线程,并且希望待其完成操作后才能执行,那么在调用线程的时就可以使用被调线程 ...
- MySQL数据库web维护客户端管理工具
TreeSoft数据库管理系统使用JAVA开发,采用稳定通用的springMVC +JDBC架构,实现基于WEB方式对 MySQL,Oracle,PostgreSQL 等数据库进行维护管理操作. 功能 ...
- WebService小记
这个问题找了好多地方都没有结果,自己暂且总结一下吧,也不算是解决问题的根本途径,但是也不失为一种办法.当时用了wsimport wsdl2java xfire 都没有解决,大牛能解决的话,欢迎留言. ...
- C/C++中的volatile究竟是什么鬼?
将变量或对象声明为volatile类型后,每次对变量的访问都是从其内存直接读取.那什么时候对变量的访问不是从其内存读取的呢?一种常见的情况就是编译器开启了优化选项,这时候对变量的访问有可能就是从寄存器 ...
- 1.Smarty的下载安装
下载地址:https://github.com/smarty-php/smarty/tree/v3.1.29 官网:smarty.net 下载解压后的目录:
- H5学习第二周
怎么说,在各种感觉中h5学习的第二周已经过来了,先总结一下,感觉学习h5是一件让我爱恨交加的事,学会一些新的知识并把它成功运行出来的时候是非常激动和兴奋的,但是有时候搞不懂一个标签或者属性的时候,就有 ...
- SQL联表查询
数据库中最最常用的语法----select.简单的select语法很直白: select column from table where expression: 从((from)存储数据的地方(tab ...
- 2017寒假零基础学习Python系列之函数之 返回多个值
Python也和C语言一样有自己的标准库,不过在Python中叫做模块(module),这个和C语言中的头文件以及Java中的包类似,其中math就是其中之一,math模块中提供了sin()和cos( ...
- MySQL实例搭建
Q:如何判断一个Linux系统具备安装MySQL的条件? A: 1.Linux网络已经配置完成 ip地址/子网掩码.默认网关.主机名字 /etc/hosts:访问这个数据库的应用的IP地址和主机名字也 ...
- Flask+uwsgi+Nginx+Ubuntu部署
学了一段时间flask,可是一直没有做过部署, 于是想着怎么部署呢, 想想,先吧服务给搞通吧,于是呢 就先想着去吧服务给搞起来,这里选择的是Flask+uwsgi+Nginx+Ubuntu, Pyth ...