Biorhythms

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2408    Accepted Submission(s): 1053

Problem Description
Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier.

Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

 
Input
You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1. 
 
Output
For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form ``days'' even if the answer is 1.

 
Sample Input
1

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

 
Sample Output
Case 1: the next triple peak occurs in 21252 days. Case 2: the next triple peak occurs in 21152 days. Case 3: the next triple peak occurs in 19575 days. Case 4: the next triple peak occurs in 16994 days. Case 5: the next triple peak occurs in 8910 days. Case 6: the next triple peak occurs in 10789 days.
题意:

有3个循环周期,周期天数分别为23、28、33。对于某一年,已知某年这3个周期的某一峰值分别是当年的第p、e、i天,

问从第d天开始到最近一个满足3个周期都达到峰值的日期还有多少天。

可以简化方程为

23x + p = a;

28y + e = a;

33z + i  = a;

然后可以写成

a===p(mod 23)

a===e(mod 28)

a===i(mod33)

这样就是转化成中国剩余定理的标准形式,注意中国剩余定理要满足模值要互素,正好在这个题中23 和28和33是互素的

介绍一下中国剩余定理

假设有式子

x===a[i](mod b[i])

0<i<k 的n个式子,式子中要求任何两个b[i]之间是互素的

然后它的解的形式是

m= b[0]*b[1]*b[2]*……*b[n];

去M[t] = m/b[t];

M[t]^-1 为用扩展欧几里得求出的M[t]对于模m的逆元

有ans = a[0]*M[0]*M[0]^-1+a[1]*M[1]*Mt[1]^-1+……+a[n]*M[n]*M[n]^-1;

有一个很好的解释的网页:http://baike.baidu.com/link?url=EIpCzOqfxyMH041vk-ek0PSq1rNN7fPjIBx7sc-loDuinvxd--T7F4ieqK4d2M1stOgry6H11JDZFbGQXmAoZg1uMLhaCOvtYfqr9NP2FGNtK6tNmr2Qa8QsS3cWkktY35hASkSLVwYJivB0_tpfN73mNEq2iaGckg2uuYXtPpYYAhLfItL-aVSZ2PWw12aIAwzQ-HxYH5lxprhIUx2BF_

下面是代码:

 //互素的中国剩余定理
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int mp[] = {,,};
int s[];
int exgcd(int a, int b, int &x, int &y)
{
if(b==) {
x = ;
y = ;
return a;
}
int ans = exgcd(b,a%b,x,y);
int tm = x;
x = y;
y = tm-a/b*y;
return ans;
} int chinese_reminder()
{
int n = ;
int ans = ;
int x,y;
for(int i = ; i < ; i++) n*=mp[i];
for(int i = ; i < ; i++){
exgcd(n/mp[i],mp[i],x,y);
ans+=s[i]*x*(n/mp[i]);
}
ans = (ans+n)%n;
return ans;
}
int main()
{
int ans;
int T;
scanf("%d",&T);
int cnt = ;
int d;
while(~scanf("%d%d%d%d",&s[],&s[],&s[],&d))
{
if(s[]==-&&s[]==-&&s[]==-&&d==-) return ;
printf("Case %d: the next triple peak occurs in ",cnt++);
ans = chinese_reminder();
if(d>ans) printf("%d days.\n",-d+ans);
else printf("%d days.\n",ans-d);
}
return ;
}

hdu_1370Biorhythms(互素的中国剩余定理)的更多相关文章

  1. hdu_1573 X问题(不互素的中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Me ...

  2. hdu1573X问题(不互素的中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  4. POJ 2891 中国剩余定理(不互素)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 17877 ...

  5. hdu 3579 Hello Kiki【中国剩余定理】(模数不要求互素)(模板题)

    <题目链接> 题目大意: 给你一些模数和余数,让你求出满足这些要求的最小的数的值. 解题分析: 中国剩余定理(模数不一定互质)模板题 #include<stdio.h> usi ...

  6. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  7. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  8. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  9. 【中国剩余定理】POJ 1006 & HDU 1370 Biorhythms

    题目链接: http://poj.org/problem?id=1006 http://acm.hdu.edu.cn/showproblem.php?pid=1370 题目大意: (X+d)%23=a ...

随机推荐

  1. [array] leetcode - 39. Combination Sum - Medium

    leetcode - 39. Combination Sum - Medium descrition Given a set of candidate numbers (C) (without dup ...

  2. nginx取结构体地址

    linux内核提供了一个container_of()宏,可以根据结构体某个成员的地址找到父结构的地址. #define container_of(ptr, type, member) ({ \ con ...

  3. android中Log类的封装

    1.为了方便的使用Log打印日志,以及后续方便撤销日志打印,所以对Log类进行封装是一件好事. package market.phone; import android.util.Log; /** * ...

  4. GVIM与模板——让FPGA开发变得更简单

    还在使用FPGA开发环境自带的代码编辑器?还在逐个字母敲击冗长重复的代码?明德扬至简设计法让你快速提高代码编写效率!利用GVIM这一高效的编辑工具并添加自定义模板,通过简短的脚本命令即可自动生成所有常 ...

  5. 10本Java书籍推荐

    1. <深入理解Java虚拟机>是近年来国内出版的唯一一本与Java虚拟机相关的专著,也是唯一一本同时从核心理论和实际运用这两个角度去探讨Java虚拟机的著作,不仅理论分析得透彻,而且书中 ...

  6. npm lodash

    在数据操作时,Lodash 就是我的弹药库,不管遇到多复杂的数据结构都能用一些函数轻松拆解. ES6 中也新增了诸多新的对象函数,一些简单的项目中 ES6 就足够使用了,但还是会有例外的情况引用了少数 ...

  7. php实现MySQL读写分离

    MySQL读写分离有好几种方式 MySQL中间件 MySQL驱动层 代码控制 关于 中间件 和 驱动层的方式这里不做深究  暂且简单介绍下 如何通过PHP代码来控制MySQL读写分离 我们都知道 &q ...

  8. JavaScript的DOM编程--05--获取文本节点

    获取文本节点: 1). 步骤: 元素节点 --> 获取元素节点的子节点 2). 若元素节点只有文本节点一个子节点, 例如 <li id="bj" name=" ...

  9. Fiddler中Response 的Raw乱码问题解决

    有时候我们看到Response中的HTML是乱码的, 这是因为HTML被压缩了, 我们可以通过两种方法去解压缩. 1. 点击Response Raw上方的"Response body is ...

  10. JDK中AbstractQueuedSynchronizer应用解析

    这个类首先是一个抽象类,定义了一个模板,很多java同步相关的类(ReetrantLock.Semaphore.CountDownLatch等)都是基于AbstractQueuedSynchroniz ...