poj_1144Network(tarjan求割点)
poj_1144Network(tarjan求割点)
标签: tarjan 割点割边模板
题目链接
Network
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 12356 Accepted: 5688
Description
A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is
possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure
occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.
Input
The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated
by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;
Output
The output contains for each block except the last in the input file one line containing the number of critical places.
Sample Input
5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0
Sample Output
1
2
Hint
You need to determine the end of one line.In order to make it's easy to determine,there are no extra blank before the end of each line.
Source
Central Europe 1996
题意:
求割点的个数,这里注意一下输入就可以了,注意这里是求的无向图的割点,注意注意
题解:
割点割边模板题
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge{
int to;
int next;
bool cut;//标记是否为桥的标记
}edge[MAXM];
int head[MAXN];
int Ecnt;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];
int bridge;
void init(){
Ecnt = 0;
memset(head,-1,sizeof(head));
memset(Low,0,sizeof(Low));
memset(DFN,0,sizeof(DFN));
memset(Stack,0,sizeof(Stack));
top = 0;
Index = 0;
memset(Instack,0,sizeof(Instack));
memset(cut, 0,sizeof(cut));
memset(add_block,0,sizeof(add_block));
}
void add(int from, int to){
edge[Ecnt].to = to;
edge[Ecnt].next = head[from];
head[from] = Ecnt++;
edge[Ecnt].to = from;
edge[Ecnt].next = head[to];
head[to] = Ecnt++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = 1;
int son = 0;
for(int i = head[u]; i!=-1; i = edge[i].next){
v = edge[i].to;
if(v == pre) continue;
if(!DFN[v]){
son++;
Tarjan(v,u);
if(Low[u]>Low[v]) Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,DFS(u)<Low(v)
if(Low[v]>DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;//有向图和无向图唯一的区别就是这里。i和i^1是同一条边不同方向
}
//割点
//一个顶点u是割点,当且仅当满足(1)u为树根,且u有多余一个字数,
//(2)u不为树根,且满足存在(u,v)为桥,即DFS(u)<=Low(v)
if(u!=pre&&Low[v]>=DFN[u])//不是树根
{
cut[u] = true;
//printf("cnt = %d\n", u);
add_block[u]++;
}
}
else if(Low[u]>DFN[v])
Low[u] = DFN[v];
}
if(u==pre&&son>1) cut[u] = true;
if(u==pre)add_block[u] = son -1;//这个数组保存去掉这个点可以产生多少个联通分量
Instack[u] = false;
top--;
// printf("id = %d %d %d\n", u, DFN[u], Low[u]);
}
int main()
{
int n;
while(~scanf("%d",&n),n)
{
init();
int tm;
int x;
char ch;
while(scanf("%d",&x), x) {
while(scanf("%c", &ch)) {
if(ch == '\n') break;
scanf("%d", &tm);
add(x-1, tm-1);
// printf("(%d %d)\n", x, tm);
}
}//这个图的建图一定要注意
Tarjan(0,0);//调用的时候要注意,因为它是通过自身编号和父亲节点编号相同来【判断是否是根节点的
int ans = 0;
for(int i = 0; i < n; i++){
if(cut[i]==1) ans++;
}
printf("%d\n",ans);
}
return 0;
}
poj_1144Network(tarjan求割点)的更多相关文章
- UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...
- POJ 1144 Network(Tarjan求割点)
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12707 Accepted: 5835 Descript ...
- poj 1523 SPF(tarjan求割点)
本文出自 http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...
- 洛谷P3388 【模板】割点(割顶)(tarjan求割点)
题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...
- [POJ1144][BZOJ2730]tarjan求割点
求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...
- poj1144 tarjan求割点
poj1144 tarjan求割点 额,算法没什么好说的,只是这道题的读入非常恶心. 注意,当前点x是否是割点,与low[x]无关,只和low[son]和dfn[x]有关. 还有,默代码的时候记住分目 ...
- tarjan求割点割边的思考
这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...
- Tarjan求割点和桥
by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...
- tarjan求割点与割边
tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...
随机推荐
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来 ...
- bzoj 2753: [SCOI2012]滑雪与时间胶囊
Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi. ...
- Oracle ADG搭建
Oracle Active Data Guard搭建 一:安装 1.基础环境配置 1.1.开启强制日志记录 DG日志发送方式中ARCH进程和LGWR进程的ASYNC模式都是基于日志同步的,所以我们必须 ...
- 启用composer镜像服务
使用composer下载东西,需要FQ时,可使用其镜像服务 安装composer后,命令行执行全局配置 composer config -g repo.packagist composer https ...
- 关于 python 新式类和旧式类继承顺序的验证
参考:http://www.cnblogs.com/blackmatrix/p/5630515.html 官方:https://docs.python.org/2/tutorial/classes.h ...
- [Micropython][ESP8266] TPYBoard V202 之MQTT协议接入OneNET云平台
随着移动互联网的发展,MQTT由于开放源代码,耗电量小等特点,将会在移动消息推送领域会有更多的贡献,在物联网领域,传感器与服务器的通信,信息的收集,MQTT都可以作为考虑的方案之一.在未来MQTT会进 ...
- select超链接跳转A
客户端页面 实现 下拉菜单 跳转链接 如图 遂使用 select option来展现.开始想到添加 a标签,结果,不行.渲染不出来 搜索查询得知 如下方法实现 ================== & ...
- 第一篇:Win10系统搭建Python+Django+Nginx+MySQL 开发环境详解(完美版)
Win10+Python+Django+Nginx+MySQL 开发环境搭建详解 PaulTsao 说明:本文由作者原创,仅供内部参考学习与交流,转载引用请注明出处,用于商业目的请联系作者本人. Wi ...
- Android Studio 查看手机CPU信息
在Android开发中,我们想要获取手机是什么CPU架构,可以通过下面方式: 1.进入adb 终端 adb shell 2.进入proc目录 cd /proc/ 3.查看cpu信息 cat cpuin ...
- Git-分布式版本控制系统(二)
工作区(Woring directory ) 版本区(repository,即隐藏的.git文件) Git的版本库里存了很多东西,其中最重要的就是称为stage(或者叫index)的暂存区,还有Git ...