poj_1144Network(tarjan求割点)
poj_1144Network(tarjan求割点)
标签: tarjan 割点割边模板
题目链接
Network
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 12356 Accepted: 5688
Description
A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is
possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure
occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.
Input
The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated
by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;
Output
The output contains for each block except the last in the input file one line containing the number of critical places.
Sample Input
5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0
Sample Output
1
2
Hint
You need to determine the end of one line.In order to make it's easy to determine,there are no extra blank before the end of each line.
Source
Central Europe 1996
题意:
求割点的个数,这里注意一下输入就可以了,注意这里是求的无向图的割点,注意注意
题解:
割点割边模板题
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge{
int to;
int next;
bool cut;//标记是否为桥的标记
}edge[MAXM];
int head[MAXN];
int Ecnt;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];
int bridge;
void init(){
Ecnt = 0;
memset(head,-1,sizeof(head));
memset(Low,0,sizeof(Low));
memset(DFN,0,sizeof(DFN));
memset(Stack,0,sizeof(Stack));
top = 0;
Index = 0;
memset(Instack,0,sizeof(Instack));
memset(cut, 0,sizeof(cut));
memset(add_block,0,sizeof(add_block));
}
void add(int from, int to){
edge[Ecnt].to = to;
edge[Ecnt].next = head[from];
head[from] = Ecnt++;
edge[Ecnt].to = from;
edge[Ecnt].next = head[to];
head[to] = Ecnt++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = 1;
int son = 0;
for(int i = head[u]; i!=-1; i = edge[i].next){
v = edge[i].to;
if(v == pre) continue;
if(!DFN[v]){
son++;
Tarjan(v,u);
if(Low[u]>Low[v]) Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,DFS(u)<Low(v)
if(Low[v]>DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;//有向图和无向图唯一的区别就是这里。i和i^1是同一条边不同方向
}
//割点
//一个顶点u是割点,当且仅当满足(1)u为树根,且u有多余一个字数,
//(2)u不为树根,且满足存在(u,v)为桥,即DFS(u)<=Low(v)
if(u!=pre&&Low[v]>=DFN[u])//不是树根
{
cut[u] = true;
//printf("cnt = %d\n", u);
add_block[u]++;
}
}
else if(Low[u]>DFN[v])
Low[u] = DFN[v];
}
if(u==pre&&son>1) cut[u] = true;
if(u==pre)add_block[u] = son -1;//这个数组保存去掉这个点可以产生多少个联通分量
Instack[u] = false;
top--;
// printf("id = %d %d %d\n", u, DFN[u], Low[u]);
}
int main()
{
int n;
while(~scanf("%d",&n),n)
{
init();
int tm;
int x;
char ch;
while(scanf("%d",&x), x) {
while(scanf("%c", &ch)) {
if(ch == '\n') break;
scanf("%d", &tm);
add(x-1, tm-1);
// printf("(%d %d)\n", x, tm);
}
}//这个图的建图一定要注意
Tarjan(0,0);//调用的时候要注意,因为它是通过自身编号和父亲节点编号相同来【判断是否是根节点的
int ans = 0;
for(int i = 0; i < n; i++){
if(cut[i]==1) ans++;
}
printf("%d\n",ans);
}
return 0;
}
poj_1144Network(tarjan求割点)的更多相关文章
- UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...
- POJ 1144 Network(Tarjan求割点)
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12707 Accepted: 5835 Descript ...
- poj 1523 SPF(tarjan求割点)
本文出自 http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...
- 洛谷P3388 【模板】割点(割顶)(tarjan求割点)
题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...
- [POJ1144][BZOJ2730]tarjan求割点
求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...
- poj1144 tarjan求割点
poj1144 tarjan求割点 额,算法没什么好说的,只是这道题的读入非常恶心. 注意,当前点x是否是割点,与low[x]无关,只和low[son]和dfn[x]有关. 还有,默代码的时候记住分目 ...
- tarjan求割点割边的思考
这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...
- Tarjan求割点和桥
by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...
- tarjan求割点与割边
tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...
随机推荐
- java方式连接数据操作数据库
package com.bdqn.dao.impl; import java.io.IOException;import java.io.InputStream;import java.io.Seri ...
- solr安装配置
1.solr是基于tomcat安装部署的 2.网上下载solr-5.2.1 http://lucene.apache.org/solr/downloads.html 3.解压solr文件 tar zx ...
- im4java包处理图片
使用方法:首先要安装ImageMagick这个工具,安装好这个工具后,再下载im4java包放到项目lib目录里就行了.package com.stu.util; import java.io.IOE ...
- IT小白学习Discuz!框架(一)
1.Discuz!是什么? 答:(1).Crossday Discuz! Board(简称 Discuz!)是北京康盛新创科技有限责任公司推出的一套通用的社区论坛软件系统. (2).Crossday ...
- S2 深入.NET和C#编程 一: 深入C#.NET框架
深入C#.NET框架 1..NET框架 之一 推荐一个代码管理平台,博客发布平台 git 之前的复习: 学习的网站: git github.com 2.类和对象的关系 Dept de ...
- JS通过decodeURIComponent函数解码
在我们调用后台接口的时候,如果后端传过来的字段是编码过的,那需要使用decodeURIComponent函数进行解码显示 var test1="http://www.jianshu.com/ ...
- js 判断值为Array or Object的方法
①obj instanceof Array / Object ②Array.prototype.isPrototypeOf(obj) ③Object.prototype.toString.call(o ...
- css布局--垂直居中
1. 使用table-cell和vertical-align实现垂直居中 html <div class="parent">使用table-cell和vertical- ...
- promise 和 async 的用法
promise // 先构造一个 promise 函数 // resolve 和 reject 都是一个函数 // resolve 在成功时调用 // reject 在失败时调用 function p ...
- msgpack库的神奇用法
一般来说,我们会把头部和实际消息分开定义,因为内部工作的worker之间发送消息有些额外的字段,这些字段不属于实际的消息.这时候我们会把worker消息中一个字段定义为interface{}或者obj ...