poj_1144Network(tarjan求割点)

标签: tarjan 割点割边模板


题目链接

Network

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 12356 Accepted: 5688

Description

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is

possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure

occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated

by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5

5 1 2 3 4

0

6

2 1 3

5 4 6 2

0

0

Sample Output

1

2

Hint

You need to determine the end of one line.In order to make it's easy to determine,there are no extra blank before the end of each line.

Source

Central Europe 1996

题意:

求割点的个数,这里注意一下输入就可以了,注意这里是求的无向图的割点,注意注意

题解:

割点割边模板题

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge{
int to;
int next;
bool cut;//标记是否为桥的标记
}edge[MAXM];
int head[MAXN];
int Ecnt;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];
int bridge;
void init(){
Ecnt = 0;
memset(head,-1,sizeof(head));
memset(Low,0,sizeof(Low));
memset(DFN,0,sizeof(DFN));
memset(Stack,0,sizeof(Stack));
top = 0;
Index = 0;
memset(Instack,0,sizeof(Instack));
memset(cut, 0,sizeof(cut));
memset(add_block,0,sizeof(add_block));
} void add(int from, int to){
edge[Ecnt].to = to;
edge[Ecnt].next = head[from];
head[from] = Ecnt++; edge[Ecnt].to = from;
edge[Ecnt].next = head[to];
head[to] = Ecnt++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = 1;
int son = 0;
for(int i = head[u]; i!=-1; i = edge[i].next){
v = edge[i].to;
if(v == pre) continue;
if(!DFN[v]){
son++;
Tarjan(v,u);
if(Low[u]>Low[v]) Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,DFS(u)<Low(v)
if(Low[v]>DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;//有向图和无向图唯一的区别就是这里。i和i^1是同一条边不同方向
}
//割点
//一个顶点u是割点,当且仅当满足(1)u为树根,且u有多余一个字数,
//(2)u不为树根,且满足存在(u,v)为桥,即DFS(u)<=Low(v)
if(u!=pre&&Low[v]>=DFN[u])//不是树根
{
cut[u] = true;
//printf("cnt = %d\n", u);
add_block[u]++;
}
}
else if(Low[u]>DFN[v])
Low[u] = DFN[v];
}
if(u==pre&&son>1) cut[u] = true;
if(u==pre)add_block[u] = son -1;//这个数组保存去掉这个点可以产生多少个联通分量
Instack[u] = false;
top--;
// printf("id = %d %d %d\n", u, DFN[u], Low[u]); } int main()
{
int n;
while(~scanf("%d",&n),n)
{
init();
int tm;
int x;
char ch;
while(scanf("%d",&x), x) {
while(scanf("%c", &ch)) {
if(ch == '\n') break;
scanf("%d", &tm);
add(x-1, tm-1);
// printf("(%d %d)\n", x, tm);
}
}//这个图的建图一定要注意
Tarjan(0,0);//调用的时候要注意,因为它是通过自身编号和父亲节点编号相同来【判断是否是根节点的
int ans = 0;
for(int i = 0; i < n; i++){
if(cut[i]==1) ans++;
}
printf("%d\n",ans);
}
return 0;
}

poj_1144Network(tarjan求割点)的更多相关文章

  1. UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

    Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...

  2. POJ 1144 Network(Tarjan求割点)

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12707   Accepted: 5835 Descript ...

  3. poj 1523 SPF(tarjan求割点)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. 洛谷P3388 【模板】割点(割顶)(tarjan求割点)

    题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

  5. [POJ1144][BZOJ2730]tarjan求割点

    求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...

  6. poj1144 tarjan求割点

    poj1144 tarjan求割点 额,算法没什么好说的,只是这道题的读入非常恶心. 注意,当前点x是否是割点,与low[x]无关,只和low[son]和dfn[x]有关. 还有,默代码的时候记住分目 ...

  7. tarjan求割点割边的思考

    这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...

  8. Tarjan求割点和桥

    by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...

  9. tarjan求割点与割边

    tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...

随机推荐

  1. Android中style和theme的区别

    在学习Xamarin android的过程中,最先开始学习的还是熟练掌握android的六大布局-LinearLayout .RelativeLayout.TableLayout.FrameLayou ...

  2. bzoj 4719: [Noip2016]天天爱跑步

    Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务.这个游戏的地图可以看作一一 ...

  3. 重写JS的鼠标右键点击菜单

    重写JS的鼠标右键点击菜单 该效果主要有三点,一是对重写的下拉菜单的隐藏和显示:二是屏蔽默认的鼠标右键事件:三是鼠标左键点击页面下拉菜单隐藏. 不多说,上html代码: 1 <ul id=&qu ...

  4. jQuery模块化开发

    //定义了命名空间. var Itcast = {}; //定义第二级别的 命名空间. var Itcast.Model = {}; var Itcast.Model.UIJs = (function ...

  5. a:hover标签已经定义了text-decoration:none,并且生效,但是还是有下划线

    a标签在F12计算出来的样式里 text-decoration:none; 确实有被应用到.但是链接的下划线并没有被去掉... 解决办法:p:commandLink <p:commandLink ...

  6. Java IO详解(四)------字符输入输出流

    File 类的介绍:http://www.cnblogs.com/ysocean/p/6851878.html Java IO 流的分类介绍:http://www.cnblogs.com/ysocea ...

  7. Spark监控官方文档学习笔记

    任务的监控和使用 有几种方式监控spark应用:Web UI,指标和外部方法 Web接口 每个SparkContext都会启动一个web UI,默认是4040端口,用来展示一些信息: 一系列调度的st ...

  8. C# 判断网站是否能访问或者断链

    参考网站:http://www.cnblogs.com/junny/archive/2012/10/30/2745978.html public bool CheckUrlVisit(string u ...

  9. python科学计算_numpy_广播与下标

    多维数组下标 多维数组的下标是用元组来实现每一个维度的,如果元组的长度比维度大则会出错,如果小,则默认元组后面补 : 表示全部访问: 如果一个下标不是元组,则先转换为元组,在转换过程中,列表和数组的转 ...

  10. strace命令详解

    转自: http://www.cnblogs.com/ahuo/p/4150623.html 备注: 这篇博文学到的不仅仅是 strace 这个命令,还有前辈的排错思路,致敬! strace 命令是一 ...