poj_1144Network(tarjan求割点)

标签: tarjan 割点割边模板


题目链接

Network

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 12356 Accepted: 5688

Description

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is

possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure

occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated

by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5

5 1 2 3 4

0

6

2 1 3

5 4 6 2

0

0

Sample Output

1

2

Hint

You need to determine the end of one line.In order to make it's easy to determine,there are no extra blank before the end of each line.

Source

Central Europe 1996

题意:

求割点的个数,这里注意一下输入就可以了,注意这里是求的无向图的割点,注意注意

题解:

割点割边模板题

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge{
int to;
int next;
bool cut;//标记是否为桥的标记
}edge[MAXM];
int head[MAXN];
int Ecnt;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];
int bridge;
void init(){
Ecnt = 0;
memset(head,-1,sizeof(head));
memset(Low,0,sizeof(Low));
memset(DFN,0,sizeof(DFN));
memset(Stack,0,sizeof(Stack));
top = 0;
Index = 0;
memset(Instack,0,sizeof(Instack));
memset(cut, 0,sizeof(cut));
memset(add_block,0,sizeof(add_block));
} void add(int from, int to){
edge[Ecnt].to = to;
edge[Ecnt].next = head[from];
head[from] = Ecnt++; edge[Ecnt].to = from;
edge[Ecnt].next = head[to];
head[to] = Ecnt++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = 1;
int son = 0;
for(int i = head[u]; i!=-1; i = edge[i].next){
v = edge[i].to;
if(v == pre) continue;
if(!DFN[v]){
son++;
Tarjan(v,u);
if(Low[u]>Low[v]) Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,DFS(u)<Low(v)
if(Low[v]>DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;//有向图和无向图唯一的区别就是这里。i和i^1是同一条边不同方向
}
//割点
//一个顶点u是割点,当且仅当满足(1)u为树根,且u有多余一个字数,
//(2)u不为树根,且满足存在(u,v)为桥,即DFS(u)<=Low(v)
if(u!=pre&&Low[v]>=DFN[u])//不是树根
{
cut[u] = true;
//printf("cnt = %d\n", u);
add_block[u]++;
}
}
else if(Low[u]>DFN[v])
Low[u] = DFN[v];
}
if(u==pre&&son>1) cut[u] = true;
if(u==pre)add_block[u] = son -1;//这个数组保存去掉这个点可以产生多少个联通分量
Instack[u] = false;
top--;
// printf("id = %d %d %d\n", u, DFN[u], Low[u]); } int main()
{
int n;
while(~scanf("%d",&n),n)
{
init();
int tm;
int x;
char ch;
while(scanf("%d",&x), x) {
while(scanf("%c", &ch)) {
if(ch == '\n') break;
scanf("%d", &tm);
add(x-1, tm-1);
// printf("(%d %d)\n", x, tm);
}
}//这个图的建图一定要注意
Tarjan(0,0);//调用的时候要注意,因为它是通过自身编号和父亲节点编号相同来【判断是否是根节点的
int ans = 0;
for(int i = 0; i < n; i++){
if(cut[i]==1) ans++;
}
printf("%d\n",ans);
}
return 0;
}

poj_1144Network(tarjan求割点)的更多相关文章

  1. UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

    Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...

  2. POJ 1144 Network(Tarjan求割点)

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12707   Accepted: 5835 Descript ...

  3. poj 1523 SPF(tarjan求割点)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. 洛谷P3388 【模板】割点(割顶)(tarjan求割点)

    题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

  5. [POJ1144][BZOJ2730]tarjan求割点

    求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...

  6. poj1144 tarjan求割点

    poj1144 tarjan求割点 额,算法没什么好说的,只是这道题的读入非常恶心. 注意,当前点x是否是割点,与low[x]无关,只和low[son]和dfn[x]有关. 还有,默代码的时候记住分目 ...

  7. tarjan求割点割边的思考

    这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...

  8. Tarjan求割点和桥

    by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...

  9. tarjan求割点与割边

    tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...

随机推荐

  1. Mybatis入门(一)之操作数据库

    Whats Mybatis 持久层框架, 替代MVC层中DAO,因为DAO 层的需求就是 :能与数据库交互的对象. 能执行SQL语句. 不同于JDBC的connection,MyBatis 中有个Sq ...

  2. 王者齐聚!Unite 2017 Shanghai 日程讲师全揭晓

    汇聚了来自全球的 Unity开发者.发行商.培训家及爱好者的 Unite 2017 Shanghai 即将于于 5 月 11 日-13日在上海·国际会议中心隆重举行.Unite 大会是由 Unity ...

  3. Python学习(五):易忘知识点

    1.列表比较函数cmp >>> a = [1,2,3,4] >>> b = [1,2,3,4,5] >>> c = [1,2,3,4] >& ...

  4. CentOs7 systemd添加自定义系统服务

    systemd: CentOS 7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分,即:/usr/lib/systemd/syste ...

  5. MVCC的一些理解

    link 一.MVCC简介 MVCC (Multiversion Concurrency Control),即多版本并发控制技术,它使得大部分支持行锁的事务引擎,不再单纯的使用行锁来进行数据库的并发控 ...

  6. SpringMVC配置双数据源,一个java项目同时连接两个数据库

    数据源在配置文件中的配置 请点击--->   java架构师项目实战,高并发集群分布式,大数据高可用,视频教程 <pre name="code" class=" ...

  7. SecureCRT连接本地的Vmware虚拟机(CentOS)时提示连接超时“Connection timed out”

    测试了一下,直接在Vmware的VM里面可以ping通宿主机. 但是宿主机无法ping通VM. 后面发现是本地的网络设置里面的vmware的NAT的网卡设置了手工填写地址和DNS. 修改为自动获取.问 ...

  8. Linux小记

    一.在vim中如何查看正在编辑的文件名 在正常模式下: :f 或 CTRL+G 查看文件的路径 用:!pwd 可以看当前的详细路径. 二.crontab 在crontab中, 命令crontab -e ...

  9. Head First设计模式之适配器模式

    一.定义 适配器模式把一个类的接口,变换成客户端所期待的另一种接口,使原本因接口不匹配的两个类能够在一起工作. 二.结构 角色: Client:用户类,使用新接口Target来完成某些特定的需求. T ...

  10. jQuery的get()post()getJson()方法

    jQuery get() 和 post() 方法用于通过 HTTP GET 或 POST 请求从服务器请求数据. HTTP 请求:GET vs. POST 两种在客户端和服务器端进行请求-响应的常用方 ...