Extending sparklyr to Compute Cost for K-means on YARN Cluster with Spark ML Library
Machine and statistical learning wizards are becoming more eager to perform analysis with Spark MLlibrary if this is only possible. It’s trendy, posh, spicy and gives the feeling of doing state of the art machine learning and being up to date with the newest computational trends. It is even more sexy and powerful when computations can be performed on the extraordinarily enormous computation cluster - let’s say 100 machines on YARN hadoop cluster makes you the real data cruncher! In this post I presentsparklyr package (by RStudio), the connector that will transform you from a regular R user, to the supa! data scientist that can invoke Scala code to perform machine learning algorithms on YARN cluster just from RStudio! Moreover, I present how I have extended the interface to K-means procedure, so that now it is also possible to compute cost for that model, which might be beneficial in determining the number of clusters in segmentation problems. Thought about learnig Scala? Leave it - user sparklyr!
- sparklyr basics
- dplyr and DBI interface on Spark
- Running Spark ML Machine Learning K-means Algorithm from R
If you don’t know much about Spark yet, you can read my April post Answers to FAQ about SparkR for R users - where I explained how could we use SparkR package that is distributed with Spark. Many things (code) might have changed since that time, due to the rapid development caused by great popularity of Spark. Now we can use version 2.0.0 of Spark. If you are migrating from previous versions I suggest you should look at Migration Guide - Upgrading From SparkR 1.6.x to 2.0.
sparklyr basics
This packages is based on sparkapi package that enables to run Spark applications locally or on YARN cluster just from R. It translates R code to bash invocation of spark-shell. It’s biggest advantage is dplyrinterface for working with Spark Data Frames (that might be Hive Tables) and possibility to invoke algorithms from Spark ML library.
Installation of sparklyr, then Spark itself and simple application initiation is described by this code
library(devtools)
install_github('rstudio/sparklyr')
library(sparklyr)
spark_install(version = "2.0.0")
sc <-
spark_connect(master="yarn",
config = list(
default = list(
spark.submit.deployMode= "client",
spark.executor.instances= 20,
spark.executor.memory= "2G",
spark.executor.cores= 4,
spark.driver.memory= "4G")))
One don’t have to specify config by himself, but if this is desired then remember that you could also specify parameters for Spark application with config.yml files so that you can benefit from many profiles (development, production). In version 2.0.0 it is desired to name master yarn instead of yarn-client and passing the deployMode parameter, which is different from version 1.6.x. All available parameters can be found in Running Spark on YARN documentation page.
dplyr and DBI interface on Spark
When connecting to YARN, it is most probable that you would like to use data tables that are stored on Hive. Remember that
Configuration of Hive is done by placing your hive-site.xml, core-site.xml (for security configuration), and hdfs-site.xml (for HDFS configuration) file in conf/.
where conf/ is set as HADOOP_CONF_DIR. Read more about using Hive tables from Spark
If everything is set up and the application runs properly, you can use dplyr interface to provide lazy evaluation for data manipulations. Data are stored on Hive, Spark application runs on YARN cluster, and the code is invoked from R in the simple language of data transformations (dplyr) - everything thanks to sparklyr team great job! Easy example is below
library(dplyr)
# give the list of tables
src_tbls(sc)
# copies iris from R to Hive
iris_tbl <- copy_to(sc, iris, "iris")
# create a hook for data stored on Hive
data_tbl <- tbl(sc, "table_name")
data_tbl2 <- tbl(sc, sql("SELECT * from table_name"))
You can also perform any operation on datasets use by Spark
iris_tbl %>%
select(Petal_Length, Petal_Width) %>%
top_n(40, Petal_Width) %>%
arrange(Petal_Length)
Note that original commas in iris names have been translated to _.
This package also provides interface for functions defined in DBI package
library(DBI)
dbListTables(sc)
dbGetQuery(sc, "use database_name")
data_tbl3 <- dbGetQuery(sc, "SELECT * from table_name")
dbListFields(sc, data_tbl3)
Running Spark ML Machine Learning K-means Algorithm from R
The basic example on how sparklyr invokes Scala code from Spark ML will be presented on K-means algorithm. If you check the code of sparklyr::ml_kmeans function you will see that for inputtbl_spark object, named x and character vector containing features’ names (featuers)
envir <- new.env(parent = emptyenv())
df <- spark_dataframe(x)
sc <- spark_connection(df)
df <- ml_prepare_features(df, features)
tdf <- ml_prepare_dataframe(df, features, ml.options = ml.options, envir = envir)
sparklyr ensures that you have proper connection to spark data frame and prepares features in convenient form and naming convention. At the end it prepares a Spark DataFrame for Spark ML routines.
This is done in a new environment, so that we can store arguments for future ML algorithm and the model itself in its own environment. This is safe and clean solution. You can construct a simple model calling a Spark ML class like this
envir$model <- "org.apache.spark.ml.clustering.KMeans"
kmeans <- invoke_new(sc, envir$model)
which invokes new object of class KMeans on which we can invoke parameters setters to change default parameters like this
model <- kmeans %>%
invoke("setK", centers) %>%
invoke("setMaxIter", iter.max) %>%
invoke("setTol", tolerance) %>%
invoke("setFeaturesCol", envir$features)
# features where set in ml_prepare_dataframe
For an existing object of KMeans class we can invoke its method called fit that is responsible for starting the K-means clustering algorithm
fit <- model %>%
invoke("fit", tdf)
which returns new object on which we can compute, e.g centers of outputted clustering
kmmCenters <- invoke(fit, "clusterCenters")
or the Within Set Sum of Squared Errors (called Cost) (which is mine small contribution #173 )
kmmCost <- invoke(fit, "computeCost", tdf)
This sometimes helps to decide how many clusters should we specify for clustering problem

and is presented in print method for ml_model_kmeans object
iris_tbl %>%
select(Petal_Width, Petal_Length) %>%
ml_kmeans(centers = 3, compute.cost = TRUE) %>%
print()
K-means clustering with 3 clusters
Cluster centers:
Petal_Width Petal_Length
1 1.359259 4.292593
2 2.047826 5.626087
3 0.246000 1.462000
Within Set Sum of Squared Errors = 31.41289
All that can be better understood if we’ll have a look on Spark ML docuemtnation for KMeans (be carefull not to confuse with Spark MLlib where methods and parameters have different names than those in Spark ML). This enabled me to provide simple update for ml_kmeans() (#179) so that we can specify tol (tolerance) parameter in ml_kmeans() to support tolerance of convergence.
inShare37
BioC 2016 Conference Overview and Few Ways of Downloading TCGA Data
Few weeks ago I have a great pleasure of attending BioC 2016: Where Software and Biology Connect Conference at Stanford, where I have learned a lot! It wouldn’t be possible without the scholarship that I received from Bioconductor (organizers), which I deeply appreciate. It was an excellent place for software developers, statisticians and biologists to exchange their experiences and to better explain their work, as the understanding between collaborators in interdisciplinary teams is essential. In this post I present my thoughts and feelings about the event and I share the knowledge that I have learned during the event, i.e. about many ways of downloading The Cancer Genome Atlas data.
Extending sparklyr to Compute Cost for K-means on YARN Cluster with Spark ML Library的更多相关文章
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 软件——机器学习与Python,聚类,K——means
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- hr员工数据分析(实战)
hr员工数据分析项目实战 (数据已脱敏) 背景说明 某公司最近公司发生多起重要员工意外离职.部分员工工作缺乏积极性等问题,受hr部门委托,开展数据分析工作. 经与hr部门沟通,确定以下需求: 制定数据 ...
- Python Machine Learning: Scikit-Learn Tutorial
这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...
- Sklearn 速查
## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...
- Extending the Yahoo! Streaming Benchmark
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...
- TensorFlow训练神经网络cost一直为0
问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭 ...
- 网络费用流-最小k路径覆盖
多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 2017华为机试题--Floyd算法
小K是X区域的销售经理,他平常常驻"5"城市,并且经常要到"1"."2"."3"."4"." ...
- 跟着刚哥梳理java知识点——异常(十一)
异常:将程序执行中发生的不正常情况(当执行一个程序时,如果出现异常,那么异常之后的代码就不在执行.) java.lang.Throwable:异常的超类 1.Error:java虚拟机无法解决的严重问 ...
- 谱聚类(Spectral clustering)(2):NCut
作者:桂. 时间:2017-04-13 21:19:41 链接:http://www.cnblogs.com/xingshansi/p/6706400.html 声明:欢迎被转载,不过记得注明出处哦 ...
- D3D Learning_01_CreateWindow
// Learn_01_CreateWindow.cpp : Defines the entry point for the application. // #include "stdafx ...
- 【外文翻译】 为什么我要写 getters 和setters
原文作者: Shamik Mitra 原文链接:https://dzone.com/articles/why-should-i-write-getters-and-setters 当我开始我的java ...
- Excel 中使用sql语句查询
将Excel连接Oracle数据库 Excel选项板中"数据"—"自其他来源"下拉菜单中有有个可以连接其它数据库的选项"来自数据连接向导"和 ...
- phpcms基础
CSM基础(做中小型企业网站) 做一个企业站,三个页面比较重要1.首页2.列表页3.内容页 做企业站的流程:1.由美工出一张,设计效果图2.将设计图静态化3.开始安装CMS4.强模板文件放到CSM里面 ...
- Pycharm实用技巧汇总
Pycharm中输入 a = list 按住Command点鼠标左键,即可查看该类下的所有用法,如下图 获取类中有哪些成员
- 今天打补丁出问题了,害得我组长被扣了1k奖金。
今天是第三次给mxdw打补丁和打包,外加公司高管说有一个东西必须要今天之内搞定外放. 我当时问策划为什么这么着急?策划说大佬决定的(这种做事方式真的很不习惯).我等屁民加班加点的搞事情,把功能搞出去了 ...
- 【JavaScript】让事件支持先发布后订阅
之前写过一个的事件管理器,就是普通的先订阅后发布模式.但实际场景中我们需要做到后订阅的也能收到发布的消息.比如我们关注微信公众号,还是能看到历史消息的.类似于qq离线消息,我先发给你,你登录了就能收到 ...