Machine and statistical learning wizards are becoming more eager to perform analysis with Spark MLlibrary if this is only possible. It’s trendy, posh, spicy and gives the feeling of doing state of the art machine learning and being up to date with the newest computational trends. It is even more sexy and powerful when computations can be performed on the extraordinarily enormous computation cluster - let’s say 100 machines on YARN hadoop cluster makes you the real data cruncher! In this post I presentsparklyr package (by RStudio), the connector that will transform you from a regular R user, to the supa! data scientist that can invoke Scala code to perform machine learning algorithms on YARN cluster just from RStudio! Moreover, I present how I have extended the interface to K-means procedure, so that now it is also possible to compute cost for that model, which might be beneficial in determining the number of clusters in segmentation problems. Thought about learnig Scala? Leave it - user sparklyr!

If you don’t know much about Spark yet, you can read my April post Answers to FAQ about SparkR for R users - where I explained how could we use SparkR package that is distributed with Spark. Many things (code) might have changed since that time, due to the rapid development caused by great popularity of Spark. Now we can use version 2.0.0 of Spark. If you are migrating from previous versions I suggest you should look at Migration Guide - Upgrading From SparkR 1.6.x to 2.0.

sparklyr basics

This packages is based on sparkapi package that enables to run Spark applications locally or on YARN cluster just from R. It translates R code to bash invocation of spark-shell. It’s biggest advantage is dplyrinterface for working with Spark Data Frames (that might be Hive Tables) and possibility to invoke algorithms from Spark ML library.

Installation of sparklyr, then Spark itself and simple application initiation is described by this code

library(devtools)
install_github('rstudio/sparklyr')
library(sparklyr)
spark_install(version = "2.0.0")
sc <-
spark_connect(master="yarn",
config = list(
default = list(
spark.submit.deployMode= "client",
spark.executor.instances= 20,
spark.executor.memory= "2G",
spark.executor.cores= 4,
spark.driver.memory= "4G")))

One don’t have to specify config by himself, but if this is desired then remember that you could also specify parameters for Spark application with config.yml files so that you can benefit from many profiles (development, production). In version 2.0.0 it is desired to name master yarn instead of yarn-client and passing the deployMode parameter, which is different from version 1.6.x. All available parameters can be found in Running Spark on YARN documentation page.

dplyr and DBI interface on Spark

When connecting to YARN, it is most probable that you would like to use data tables that are stored on Hive. Remember that

Configuration of Hive is done by placing your hive-site.xml, core-site.xml (for security configuration), and hdfs-site.xml (for HDFS configuration) file in conf/.

where conf/ is set as HADOOP_CONF_DIR. Read more about using Hive tables from Spark

If everything is set up and the application runs properly, you can use dplyr interface to provide lazy evaluation for data manipulations. Data are stored on Hive, Spark application runs on YARN cluster, and the code is invoked from R in the simple language of data transformations (dplyr) - everything thanks to sparklyr team great job! Easy example is below

library(dplyr)
# give the list of tables
src_tbls(sc)
# copies iris from R to Hive
iris_tbl <- copy_to(sc, iris, "iris")
# create a hook for data stored on Hive
data_tbl <- tbl(sc, "table_name")
data_tbl2 <- tbl(sc, sql("SELECT * from table_name"))

You can also perform any operation on datasets use by Spark

iris_tbl %>%
select(Petal_Length, Petal_Width) %>%
top_n(40, Petal_Width) %>%
arrange(Petal_Length)

Note that original commas in iris names have been translated to _.

This package also provides interface for functions defined in DBI package

library(DBI)
dbListTables(sc)
dbGetQuery(sc, "use database_name")
data_tbl3 <- dbGetQuery(sc, "SELECT * from table_name")
dbListFields(sc, data_tbl3)

Running Spark ML Machine Learning K-means Algorithm from R

The basic example on how sparklyr invokes Scala code from Spark ML will be presented on K-means algorithm. If you check the code of sparklyr::ml_kmeans function you will see that for inputtbl_spark object, named x and character vector containing features’ names (featuers)

envir <- new.env(parent = emptyenv())
df <- spark_dataframe(x)
sc <- spark_connection(df)
df <- ml_prepare_features(df, features)
tdf <- ml_prepare_dataframe(df, features, ml.options = ml.options, envir = envir)

sparklyr ensures that you have proper connection to spark data frame and prepares features in convenient form and naming convention. At the end it prepares a Spark DataFrame for Spark ML routines.

This is done in a new environment, so that we can store arguments for future ML algorithm and the model itself in its own environment. This is safe and clean solution. You can construct a simple model calling a Spark ML class like this

envir$model <- "org.apache.spark.ml.clustering.KMeans"
kmeans <- invoke_new(sc, envir$model)

which invokes new object of class KMeans on which we can invoke parameters setters to change default parameters like this

model <- kmeans %>%
invoke("setK", centers) %>%
invoke("setMaxIter", iter.max) %>%
invoke("setTol", tolerance) %>%
invoke("setFeaturesCol", envir$features)
# features where set in ml_prepare_dataframe

For an existing object of KMeans class we can invoke its method called fit that is responsible for starting the K-means clustering algorithm

fit <- model %>%
invoke("fit", tdf)

which returns new object on which we can compute, e.g centers of outputted clustering

kmmCenters <- invoke(fit, "clusterCenters")

or the Within Set Sum of Squared Errors (called Cost) (which is mine small contribution #173 )

kmmCost <- invoke(fit, "computeCost", tdf)

This sometimes helps to decide how many clusters should we specify for clustering problem

and is presented in print method for ml_model_kmeans object

iris_tbl %>%
select(Petal_Width, Petal_Length) %>%
ml_kmeans(centers = 3, compute.cost = TRUE) %>%
print() K-means clustering with 3 clusters Cluster centers:
Petal_Width Petal_Length
1 1.359259 4.292593
2 2.047826 5.626087
3 0.246000 1.462000 Within Set Sum of Squared Errors = 31.41289

All that can be better understood if we’ll have a look on Spark ML docuemtnation for KMeans (be carefull not to confuse with Spark MLlib where methods and parameters have different names than those in Spark ML). This enabled me to provide simple update for ml_kmeans() (#179) so that we can specify tol (tolerance) parameter in ml_kmeans() to support tolerance of convergence.

 

inShare37

BioC 2016 Conference Overview and Few Ways of Downloading TCGA Data

Few weeks ago I have a great pleasure of attending BioC 2016: Where Software and Biology Connect Conference at Stanford, where I have learned a lot! It wouldn’t be possible without the scholarship that I received from Bioconductor (organizers), which I deeply appreciate. It was an excellent place for software developers, statisticians and biologists to exchange their experiences and to better explain their work, as the understanding between collaborators in interdisciplinary teams is essential. In this post I present my thoughts and feelings about the event and I share the knowledge that I have learned during the event, i.e. about many ways of downloading The Cancer Genome Atlas data.

转自:http://r-addict.com/2016/08/25/Extending-Sparklyr.html

Extending sparklyr to Compute Cost for K-means on YARN Cluster with Spark ML Library的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  4. hr员工数据分析(实战)

    hr员工数据分析项目实战 (数据已脱敏) 背景说明 某公司最近公司发生多起重要员工意外离职.部分员工工作缺乏积极性等问题,受hr部门委托,开展数据分析工作. 经与hr部门沟通,确定以下需求: 制定数据 ...

  5. Python Machine Learning: Scikit-Learn Tutorial

    这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...

  6. Sklearn 速查

    ## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...

  7. Extending the Yahoo! Streaming Benchmark

    could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...

  8. TensorFlow训练神经网络cost一直为0

    问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭 ...

  9. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

随机推荐

  1. 脚本语言:Xmas(一)

    很偶然的一个想法,在从北京回成都的高铁上:我想要一个计算器.于是在火车上花了十来个小时,完成了一个模型:能够处理+-*/的优先级,以及"()",比如:1+(3+2)*4.这已是一年 ...

  2. seo从业者发展方向

    对于很多朋友来说,seo就是一项比较简单的技能,内容+外链,就可以基本囊括seo的基本内容了.可能很多朋友对此不屑一顾,会说seo可是包含万象, 你需要懂网页设计.标签设计,分词优化.企业建站等等方面 ...

  3. Layoutparams理解

    一. layoutparams是什么LayoutParams继承于Android.View.ViewGroup.LayoutParamsLayoutParams只是ViewGroup的一个内部类 vi ...

  4. jquery 模态窗口 蒙层无法覆盖flash解决办法

    在应用swf的<object></object>标签中加入如下属性: <param name="wmode" value="transpar ...

  5. Openstack Swift 原理、架构与 API 介绍

    OpenStack Swift 开源项目提供了弹性可伸缩.高可用的分布式对象存储服务,适合存储大规模非结构化数据.本文将深入介绍 Swift 的基本设计原理.对称式的系统架构和 RESTful API ...

  6. Python学习之路-Day1-Python基础

    学习python的过程: 在茫茫的编程语言中我选择了python,因为感觉python很强大,能用到很多领域.我自己也学过一些编程语言,比如:C,java,php,html,css等.但是我感觉自己都 ...

  7. shell入门笔记1:执行方式、运行方式、变量、替换

    说明: 本文是关于http://c.biancheng.net/cpp/shell/的相关笔记 shell的两种执行方式 交互式(interactive) 解释执行用户的命令,用户输入一条命令,She ...

  8. js快速去除数组重复项

    function unique1(arr) { var tmp = new Array(); tmp.push(arr[0]); for(var i=0;i<arr.length;i++) { ...

  9. MySQL · 引擎特性 · InnoDB Buffer Pool

    前言 用户对数据库的最基本要求就是能高效的读取和存储数据,但是读写数据都涉及到与低速的设备交互,为了弥补两者之间的速度差异,所有数据库都有缓存池,用来管理相应的数据页,提高数据库的效率,当然也因为引入 ...

  10. jdk动态代理原理

    http://www.cnblogs.com/MOBIN/p/5597215.html   请先查看这边博文 此文主要是在上篇博文的基础之上,宏观的理一下思路,因为之前本人看了上篇之后云里雾里(是本人 ...