As always a more colourful version of this post is available on rpubs.

Even if LM are very simple models at the basis of many more complex ones, LM still have some assumptions that if not met would render any interpretation from the models plainly wrong. In my field of research most people were taught about checking ANOVA assumptions using tests like Levene & co. This is however not the best way to check if my model meet its assumptions as p-values depend on the sample size, with small sample size we will almost never reject the null hypothesis while with big sample even small deviation will lead to significant p-values (discussion). As ANOVA and linear models are two different ways to look at the same model (explanation) we can check ANOVA assumptions using graphical check from a linear model. In R this is easily done using plot(model), but people often ask me what amount of deviation makes me reject a model. One easy way to see if the model checking graphs are off the charts is to simulate data from the model, fit the model to these newly simulated data and compare the graphical checks from the simulated data with the real data. If you cannot differentiate between the simulated and the real data then your model is fine, if you can then try again!

Below is a little function that implement this idea:

lm.test<-function(m  require(plyr)
#the model frame
dat<-model.frame(m)
#the model matrix
f<-formula(m)
modmat<-model.matrix(f,dat)
#the standard deviation of the residuals
sd.resid<-sd(resid(m #sample size
n<-dim(dat)[1]
#get the right-hand side of the formula
#rhs<-all.vars(update(f, 0~.))
#simulate 8 response vectors from model
ys<-lapply(1:8,function(x) rnorm(n,modmat%*%coef(m),sd.resid))
#refit the models
ms<-llply(ys,function(y) lm(y~modmat[,-1]))
#put the residuals and fitted values in a list
df<-llply(ms,function(x) data.frame(Fitted=fitted(x),Resid=resid(x)))
#select a random number from 2 to 8
rnd<-sample(2:8,1)
#put the original data into the list
df<-c(df[1:(rnd-1)],list(data.frame(Fitted=fitted(m),Resid=resid(m))),df[rnd:8]) #plot
par(mfrow=c(3,3))
l_ply(df,function(x){
plot(Resid~Fitted,x,xlab="Fitted",ylab="Residuals")
abline(h=0,lwd=2,lty=2)
}) l_ply(df,function(x){
qqnorm(x$Resid)
qqline(x$Resid)
}) out<-list(Position=rnd)
return(out)
}

This function print the two basic plots: one looking at the spread of the residuals around the fitted values, the other one look at the normality of the residuals. The function return the position of the real model in the 3×3 window, counting from left to right and from top to bottom (ie position 1 is upper left graph).

Let’s try the function:

#a simulated data frame of independent variables
dat<-data.frame(Temp=runif(100,0,20),Treatment=gl(n = 5,k = 20))
contrasts(dat$Treatment)<-"contr.sum"
#the model matrix
modmat<-model.matrix(~Temp*Treatment,data=dat)
#the coefficient
coeff<-rnorm(10,0,4)
#simulate response data
dat$Biomass<-rnorm(100,modmat%*%coeff,1)
#the model
m<-lm(Biomass~Temp*Treatment,dat)
#model check
chk<-lm.test(m)

Can you find which one is the real one? I could not, here is the answer:

chk
$Position
[1] 4

Happy and safe modelling!

转自:https://biologyforfun.wordpress.com/2015/03/25/a-function-to-help-graphical-model-checks-of-lm-and-anova/

A function to help graphical model checks of lm and ANOVA(转)的更多相关文章

  1. PGM:概率图模型Graphical Model

    http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...

  2. 概率图模型(PGM,Probabilistic Graphical Model)

    PGM是现代信号处理(尤其是机器学习)的重要内容. PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来.因此PGM包括图论和概率论的相关内容. PGM理论研究并解决三个问题: 1)表示 ...

  3. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  4. 构建自己的PHP框架--实现Model类(1)

    在之前的博客中,我们定义了ORM的接口,以及决定了使用PDO去实现.最后我们提到会有一个Model类实现ModelInterface接口. 现在我们来实现这个接口,如下: <?php names ...

  5. Implementation Model Editor of AVEVA in OpenSceneGraph

    Implementation Model Editor of AVEVA in OpenSceneGraph eryar@163.com 摘要Abstract:本文主要对工厂和海工设计软件AVEVA的 ...

  6. 【再探backbone 01】模型-Model

    前言 点保存时候不注意发出来了,有需要的朋友将就看吧,还在更新...... 几个月前学习了一下backbone,这段时间也用了下,感觉之前对backbone的学习很是基础,前几天有个园友问我如何将路由 ...

  7. PHP MVC 中的MODEL层

    Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...

  8. hdwiki中model模块的应用

    control中调用model原则是这样的,如果你的这个model在本control中大部分方法中都要用到,那么,就写在构造函数里面.例如,名字为doc的control的构造函数如下: functio ...

  9. [Backbone.js]如何处理Model里面嵌入的Collection?

    写了近半个月的backbone.js代码,从一开始的todo到现在做仿微信的网页聊天,其中最大的困惑就在于如何处理比较复杂的Model,其内嵌了一个或者多个Collections. 假设我们有一个Pe ...

随机推荐

  1. JavaScript学习总结(一)DOM文档对象模型

    一.文档(D) 一个网页运行在浏览器中,他就是一个文档对象. 二.对象(O) "对象"是一种自足的数据集合.与某个特定对象相关联的变量被称为这个对象的属性,只能通过某个对象调用的函 ...

  2. HNOI2017前被虐记及感悟

    本文所记录的时间以HNOI2017第一天考试时间为DAY1,前一天为DAY0,以此类推. 本文记载了博主从HNOI2017开始前一周进行全真模拟考试的被虐过程和结果.文章内可能包含博主的不良情绪,如果 ...

  3. iOS项目中常见的文件

    html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,bi ...

  4. MongoDB基础教程系列--第八篇 MongoDB 副本集实现复制功能

    为什么用复制 为什么要使用复制呢?如果我们的数据库只存在于一台服务器,若这台服务器宕机了,那对于我们数据将会是灾难,当然这只是其中一个原因,若数据量非常大,读写操作势必会影响数据库的性能,这时候复制就 ...

  5. 基于opencv的车牌识别系统

    前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述     OpenCV的全称是:Open Source Computer Vision ...

  6. 初识JS

    今儿我遇到一特别恐怖的事儿,JS 刚开始的我看到JS感觉是懵逼的,翻开第一页,感觉是棒棒哒,再看第二页,感觉是easy的,看到第三页是恐怖的,当看到的第四页的时候,我感觉今年的清明节是为我准备的 废话 ...

  7. 使用Entity Framework时遇到的问题

    1.运行程序时提示 ,vension does not match. 差不多是这样一个提示,具体怎么样的给忘记了. #1remove 'entity framework' from reference ...

  8. 【转】JDBC学习笔记(9)——DBUtils的使用

    转自:http://www.cnblogs.com/ysw-go/ 使用DBUtils提供的功能需要使用commons-dbutils-1.6.jar这个JAR包,在Apache官网可以下载到 使用D ...

  9. Asp.net Authorization 学习

    其实使用新的Identity以来一直有一个疑惑,之前的角色管理 在新的Identity中怎么管理的.[AspNetUserClaims] 在新的授权管理中又占什么位置 第一,根据角色授权,刚刚注册的用 ...

  10. 简单的留言板(dom+正则练习)

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...