As always a more colourful version of this post is available on rpubs.

Even if LM are very simple models at the basis of many more complex ones, LM still have some assumptions that if not met would render any interpretation from the models plainly wrong. In my field of research most people were taught about checking ANOVA assumptions using tests like Levene & co. This is however not the best way to check if my model meet its assumptions as p-values depend on the sample size, with small sample size we will almost never reject the null hypothesis while with big sample even small deviation will lead to significant p-values (discussion). As ANOVA and linear models are two different ways to look at the same model (explanation) we can check ANOVA assumptions using graphical check from a linear model. In R this is easily done using plot(model), but people often ask me what amount of deviation makes me reject a model. One easy way to see if the model checking graphs are off the charts is to simulate data from the model, fit the model to these newly simulated data and compare the graphical checks from the simulated data with the real data. If you cannot differentiate between the simulated and the real data then your model is fine, if you can then try again!

Below is a little function that implement this idea:

lm.test<-function(m  require(plyr)
#the model frame
dat<-model.frame(m)
#the model matrix
f<-formula(m)
modmat<-model.matrix(f,dat)
#the standard deviation of the residuals
sd.resid<-sd(resid(m #sample size
n<-dim(dat)[1]
#get the right-hand side of the formula
#rhs<-all.vars(update(f, 0~.))
#simulate 8 response vectors from model
ys<-lapply(1:8,function(x) rnorm(n,modmat%*%coef(m),sd.resid))
#refit the models
ms<-llply(ys,function(y) lm(y~modmat[,-1]))
#put the residuals and fitted values in a list
df<-llply(ms,function(x) data.frame(Fitted=fitted(x),Resid=resid(x)))
#select a random number from 2 to 8
rnd<-sample(2:8,1)
#put the original data into the list
df<-c(df[1:(rnd-1)],list(data.frame(Fitted=fitted(m),Resid=resid(m))),df[rnd:8]) #plot
par(mfrow=c(3,3))
l_ply(df,function(x){
plot(Resid~Fitted,x,xlab="Fitted",ylab="Residuals")
abline(h=0,lwd=2,lty=2)
}) l_ply(df,function(x){
qqnorm(x$Resid)
qqline(x$Resid)
}) out<-list(Position=rnd)
return(out)
}

This function print the two basic plots: one looking at the spread of the residuals around the fitted values, the other one look at the normality of the residuals. The function return the position of the real model in the 3×3 window, counting from left to right and from top to bottom (ie position 1 is upper left graph).

Let’s try the function:

#a simulated data frame of independent variables
dat<-data.frame(Temp=runif(100,0,20),Treatment=gl(n = 5,k = 20))
contrasts(dat$Treatment)<-"contr.sum"
#the model matrix
modmat<-model.matrix(~Temp*Treatment,data=dat)
#the coefficient
coeff<-rnorm(10,0,4)
#simulate response data
dat$Biomass<-rnorm(100,modmat%*%coeff,1)
#the model
m<-lm(Biomass~Temp*Treatment,dat)
#model check
chk<-lm.test(m)

Can you find which one is the real one? I could not, here is the answer:

chk
$Position
[1] 4

Happy and safe modelling!

转自:https://biologyforfun.wordpress.com/2015/03/25/a-function-to-help-graphical-model-checks-of-lm-and-anova/

A function to help graphical model checks of lm and ANOVA(转)的更多相关文章

  1. PGM:概率图模型Graphical Model

    http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...

  2. 概率图模型(PGM,Probabilistic Graphical Model)

    PGM是现代信号处理(尤其是机器学习)的重要内容. PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来.因此PGM包括图论和概率论的相关内容. PGM理论研究并解决三个问题: 1)表示 ...

  3. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  4. 构建自己的PHP框架--实现Model类(1)

    在之前的博客中,我们定义了ORM的接口,以及决定了使用PDO去实现.最后我们提到会有一个Model类实现ModelInterface接口. 现在我们来实现这个接口,如下: <?php names ...

  5. Implementation Model Editor of AVEVA in OpenSceneGraph

    Implementation Model Editor of AVEVA in OpenSceneGraph eryar@163.com 摘要Abstract:本文主要对工厂和海工设计软件AVEVA的 ...

  6. 【再探backbone 01】模型-Model

    前言 点保存时候不注意发出来了,有需要的朋友将就看吧,还在更新...... 几个月前学习了一下backbone,这段时间也用了下,感觉之前对backbone的学习很是基础,前几天有个园友问我如何将路由 ...

  7. PHP MVC 中的MODEL层

    Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封 三.实现你的Mode层 Model层,就是MVC模式中的数据处理层,用来进行数据和商业逻辑的装封,进行他的设计的时候设计到三个 ...

  8. hdwiki中model模块的应用

    control中调用model原则是这样的,如果你的这个model在本control中大部分方法中都要用到,那么,就写在构造函数里面.例如,名字为doc的control的构造函数如下: functio ...

  9. [Backbone.js]如何处理Model里面嵌入的Collection?

    写了近半个月的backbone.js代码,从一开始的todo到现在做仿微信的网页聊天,其中最大的困惑就在于如何处理比较复杂的Model,其内嵌了一个或者多个Collections. 假设我们有一个Pe ...

随机推荐

  1. weex里Vuex state使用storage持久化

    在weex里使用Vuex作为state管理工具,问题来了,如何使得state可以持久化呢?weex官方提供store模块,因此我们可以尝试使用该模块来持久化state. 先看下该模块介绍: stora ...

  2. 一个web应用的诞生(11)--在探首页

    就要面对本章的一个难点了,说是难点可能仅仅对于我来说,毕竟我是一个js渣,既然首页打算使用动态加载的形式,那么与后台交互的方式就要进行选择,目前比较流行的为RESTful的形式,关于RESTful的文 ...

  3. 自动化构建工具gulp简单介绍及使用

    一.简介及安装: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成:使用她,我们不仅可以很愉快 ...

  4. Java设计模式:代理模式(一)

    问题的提出 现在生活中,常常在微信朋友圈里面看到代购的信息,你想在国外买什么,香港买什么,但是又懒得自己过去,于是常常委托别人帮忙买奶粉买那啥的.这类问题的缘由是因为客户和原产地没有直接的接触,所以需 ...

  5. 【从无到有】教你使用animation做简单的动画效果

    今天写写怎么用animation属性做一些简单的动画效果 在CSS选择器中,使用animition动画属性,调用声明好的关键帧 首先声明一个动画(关键帧): @keyframes name{ from ...

  6. 开始奇妙的DP之旅

    铭记各位大佬教导,开始看一些很迷的动态规划,那就从比较典型的01背包开始吧,想想还是从比较简单的导弹拦截开始吧,说简单都是骗人的,还是看采药吧. 一.动态规划 刚听到动态规划这个东西,据HLT大佬所言 ...

  7. bzoj4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  8. JVM 方法调用之动态分派

    1. 动态分派 一个体现是重写(override).下面的代码,运行结果很明显. public class App { public static void main(String[] args) { ...

  9. 【2017-05-04】winfrom进程、线程

    一.进程 一个进程就是一个程序,利用进程可以在一个程序中打开另一个程序. 1.开启某个进程Process.Start("文件缩写名"); 注意:Process要解析命名空间. 2. ...

  10. hust1010 kmp

    There is a string A. The length of A is less than 1,000,000. I rewrite it again and again. Then I go ...