To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10839    Accepted Submission(s): 5191

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.



As an example, the maximal sub-rectangle of the array:



0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2



is in the lower left corner:



9 2

-4 1

-1 8



and has a sum of 15.
 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>


ACM HDU 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  3. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  4. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  7. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  8. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. LeetCode 292. Nim Game (取物游戏)

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

  2. java对象类型转换和多态性

    html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,h ...

  3. Visual paradigm软件介绍

    Visual paradigm软件介绍 说起Visual Paradigm你可能并不陌生,因为此前有一款功能强大的UML软件叫Visual Paradigm for UML,在这款软件在v11.1的时 ...

  4. Muduo阅读笔记--base(二)

    上一篇文章对muduo的入门做了介绍. http://www.cnblogs.com/LCCRNblog/p/5668035.html base文件夹下这么多代码,该如何入手呢?对于我这种第一次接触大 ...

  5. rsync服务精讲 -- 视频

    rsync服务 开源数据同步工具rsync视频(老男孩分享) 浏览网址 01-rsync基础介绍 http://oldboy.blog.51cto.com/2561410/1216550 11-rsy ...

  6. IdentityServer4 登录成功后,跳转到原来页面

    IdentityServer4 登录成功后,默认会跳转到Config.Client配置的RedirectUris地址http://localhost:5003/callback.html,用于获取 T ...

  7. 【IDEA】向IntelliJ IDEA创建的项目导入Jar包的两种方式

    转载请注明出处:http://blog.csdn.net/qq_26525215 本文源自[大学之旅_谙忆的博客] 今天用IDEA,需要导入一个Jar包,因为以前都是用eclipse的,所以对这个id ...

  8. IDEA搭建SSMM框架(详细过程)

    IDEA搭建SSMM框架(详细过程) 相关环境 Intellij IDEA Ultimate Tomcat JDK MySql 5.6(win32/win64) Maven (可使用Intellij ...

  9. PHP--最常用--必背函数总结!php学习者收藏必备!

    一.PHP系统函数 函数 功能 用法 var_dump() 打印变量结构信息,包括类型和值.数组将递归展开值 var_dump ( $arg1...); echo():是语法结构 输出一个或者多个字符 ...

  10. Android开发之漫漫长途 Ⅴ——Activity的显示之ViewRootImpl的PreMeasure、WindowLayout、EndMeasure、Layout、Draw

    该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...