To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10839    Accepted Submission(s): 5191

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.



As an example, the maximal sub-rectangle of the array:



0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2



is in the lower left corner:



9 2

-4 1

-1 8



and has a sum of 15.
 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>


ACM HDU 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  3. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  4. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  7. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  8. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. LeetCode 455. Assign Cookies (分发曲奇饼干)

    Assume you are an awesome parent and want to give your children some cookies. But, you should give e ...

  2. LeetCode 100. Same Tree (相同的树)

    Given two binary trees, write a function to check if they are equal or not. Two binary trees are con ...

  3. 浅析Entity Framework Core中的并发处理

    前言 Entity Framework Core 2.0更新也已经有一段时间了,园子里也有不少的文章.. 本文主要是浅析一下Entity Framework Core的并发处理方式. 1.常见的并发处 ...

  4. c++ 类覆盖方法中的协变返回类型

    c++ 类覆盖方法中的协变返回类型 在C++中,只要原来的返回类型是指向类的指针或引用,新的返回类型是指向派生类的指针或引用,覆盖的方法就可以改变返回类型.这样的类型称为协变返回类型(Covarian ...

  5. Codeforces Round #380 (Div. 2)D. Sea Battle

    D. Sea Battle time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. Rem与Px的转换[转载]

    原文:http://www.w3cplus.com/preprocessor/sass-px-to-rem-with-mixin-and-function.html rem是CSS3中新增加的一个单位 ...

  7. 整数中1出现的次数(从1到n的整数中1出现的次数)

    题目 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...

  8. oracle数据库管理系统常见的错误(一)

    oracle数据库管理系统常见的错误之一如下: Listener refused the connection with the following error:ORA-12519, TNS:no a ...

  9. 小白必看Python视频基础教程

    Python的排名从去年开始就借助人工智能持续上升,现在它已经成为了第一名.Python的火热,也带动了工程师们的就业热.可能你也想通过学习加入这个炙手可热的行业,可以看看Python视频基础教程,小 ...

  10. 快速搭建Japser Report

    下列步骤是快速搭建一个Jasper Report,开发中遇到的坑会在下一个博客中提及,如有任何问题,欢迎留言评论 第一步,打开Jaspersoft Studio,界面跟eclispse一样 创建项目: ...