To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10839    Accepted Submission(s): 5191

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.



As an example, the maximal sub-rectangle of the array:



0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2



is in the lower left corner:



9 2

-4 1

-1 8



and has a sum of 15.
 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<map>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
#define MAX 0x3f3f3f3f
#define MIN -0x3f3f3f3f
#define PI 3.14159265358979323
#define N 105
int n;
int ans[N][N];
int value(int x, int y)
{
int sum;
int i, j;
sum = 0;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i >= x&&j >= y)
sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
if (i >= y&&j >= x)
sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
}
}
return sum;
}
int main()
{
int i, j;
int result;
int num;
int temp;
while (scanf("%d", &n) != EOF)
{
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &num);
ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
}
}
result = 0;
for (i = 1; i <= n; i++)
{
for (j = i; j <= n; j++)
{
temp = value(i, j);
if (temp > result)
result = temp;
}
}
printf("%d\n", result);
}
return 0;
}</span>


ACM HDU 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  3. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  4. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  7. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  8. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

随机推荐

  1. 关于js赋值给input解析

    <script type="text/javascript"> //关于js中取值问题 $(function(){ //定义function函数 var firstDa ...

  2. fiddler学习资源

    小坦克   fiddler教程:http://www.cnblogs.com/TankXiao/archive/2012/04/25/2349049.htmlps:另外博主其他测试文章也值得一看 涂根 ...

  3. angular-utils-ui-breadcrumbs使用心得

    angular-utils-ui-breadcrumbs是一个用来自动生成面包屑导航栏的一个插件,需要依赖angular.UIRouter和bootstrap3.css.生成的界面截图如下,点击相应的 ...

  4. mui的上拉加载更多 下拉刷新 自己封装的demo

    ----------------------------------------------- 这是一个非常呆萌的程序妹子,深夜码的丑代码------------------------------- ...

  5. 【推荐】地推统计结算工具SDK,手机开发首选

    地推是推广app的一种重要手段,同时地推结算对地推统计的精度的要求非常高,而openinstall就是一款符合要求的地推统计结算工具.它不仅多渠道统计能力强,安装设备识别精准,渠道统计精度高.还支持地 ...

  6. Lua 和 C 交互中虚拟栈的操作

    Lua 和 C 交互中虚拟栈的操作 /* int lua_pcall(lua_State *L, int nargs, int nresults, int msgh) * 以保护模式调用具有" ...

  7. NumPy基础练习(练一遍搞定NumPy)

    import numpy as np import pandas as pd from numpy import random from numpy.random import randn ##### ...

  8. HDFS的接口(命令行接口和Java接口)--笔记

    HDFS 文件的系统访问的接口 1.Hadoop的shell命令脚本 hadoop fs -ls   列出某一个目录下的文件 hadoop fs -lsr 递归的方式列出所有文件 hadoop fs ...

  9. [java基础] java 左移和右移

    今天搜到一个比较好用的在线编译器,希望和大家分享. 除了java还有c++....,地址是http://www.tutorialspoint.com/compile_java_online.php 另 ...

  10. socket阻塞IO流程图

    单线程 多线程