斐波那契数列想必大家都知道吧,如果不知道的话,我就再啰嗦一遍,

斐波那契数列为:1 2 3 5 8 13 ...,也就是除了第一项和第二项为1以外,对于第N项,有f(N)=f(N-1)+f(N-2)。

下面我用三种方法实现这个函数,分别是:递归,循环,矩阵。

递归方法:

public class Feibo {
//递归方法
public static int recFeiBo(int n) {
if(n<=0) {
return 0;
} if(n==1 || n==2) {
return 1;
} return recFeiBo(n-1) + recFeiBo(n-2);
} public static void main(String[] args) {
System.out.println(recFeiBo(6));
}
}

循环方法:

public class Feibo{
public static int recFeiBo(int n) {
if(n<=0) {
return 0;
} if(n==1 || n==2) {
return 1;
} int pre =1;
int temp =0;
int res =1; for(int i=1; i<=n-2; i++) {
temp = res;
res+=pre;
pre = temp;
} return res;
} public static void main(String[] args) {
System.out.println(recFeiBo(6));
}
}

矩阵的方法:

不知道你们有没有发现:

所以,最终求第N项数,就转化为求矩阵的n-2次方。

public class Feibo{
public static int recFeiBo(int n) {
if(n<=0) {
return 0;
}
if(n==1 || n==2) {
return 1;
} int[][] baseMatrix = {{1,1},{1,0}};
int[][] res = matrixPower(baseMatrix, n-2);
return res[0][0] + res[1][0];
} public static int[][] matrixPower(int[][] m, int n) {
int[][] temp = m;
int[][] res = new int[m.length][m[0].length]; for(int i=0; i<m.length; i++) {
res[i][i] = 1;
}
//n左移一位,并赋值给n
//下面的for循环是用来快速的求解矩阵的n次方的。可以参考我下一篇关于如何快求解高次方
for(;n!=0; n>>=1) {
//判断第0位是不是1
if((n&1)!=0) {
res = multiMtrix(res,temp);
}
temp= multiMtrix(temp, temp);
} return res;
} private static int[][] multiMtrix(int[][] m1, int[][] m2) {
int[][] res = new int[m1.length][m2[0].length];
for(int i=0; i<m1.length; i++) {
for(int j=0; j<m2[0].length; j++) {
for(int k=0; k<m2.length; k++) {
res[i][j] += m1[i][k]*m2[k][j];
}
}
}
return res;
} public static void main(String[] args) {
System.out.println(recFeiBo(6));
}
}

其实斐波那契额数列问题就是可以总结为一类问题,就是让你求的当前值可以用函数表示的,f(n)=f(n-1)+f(n-2),这类问题你都可以用矩阵的方式去实现,比如爬楼梯问题,有n阶楼梯,每次只能跨1阶或2阶,归结出来就是s(n)=s(n-1)+s(n-2),初始值s(1)=1,s(2)=2.

斐波那契数列—Java的更多相关文章

  1. 斐波那契数列-java编程:三种方法实现斐波那契数列

    题目要求:编写程序在控制台输出斐波那契数列前20项,每输出5个数换行 斐波那契数列指的是这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … 这个数列 ...

  2. 斐波那契数列—java实现

    最近在面试的时候被问到了斐波那契数列,而且有不同的实现方式,就在这里记录一下. 定义 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

  3. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  4. 斐波那契数列-java实现

    1,1,2,3,5,8,13,21...... 以上的数列叫斐波那契数列,今天的面试第一题,输出前50个,这里记录下. 方式一 package com.geenk.demo.my; /** * @au ...

  5. 07.斐波那契数列 Java

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 思路 递归 若n<=2;返回n; 否则,返回Fibonacci ...

  6. 《剑指offer》面试题9 斐波那契数列 Java版

    书中方法一:递归,这种方法效率不高,因为可能会有很多重复计算. public long calculate(int n){ if(n<=0){ return 0; } if(n == 1){ r ...

  7. 用HashMap优化斐波那契数列 java算法

    斐波那契是第一项为0,第二项为1,以后每一项是前面两项的和的数列. 源码:Fibonacci.java public class Fibonacci{ private static int times ...

  8. 斐波那契数列(Java实现)

    描述 一个斐波那契序列,F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) (n>=2),根据n的值,计算斐波那契数F(n),其中0≤n≤1000. 输入 输入 ...

  9. 斐波那契数列 Java 不同的实现方法所需要的时间比较

    # 首先我们直接看一个demo以及他的结果 public class QQ { public static void main(String[] args) throws ParseException ...

随机推荐

  1. Selenium对浏览器支持的版本

    最新的selenium与几种常用浏览器的版本兼容情况: selenium 3.4.0 : Mozilla GeckoDriver 0.18  --  Firefox 53 - 56 Google Ch ...

  2. (转)systemctl 命令完全指南

    场景:在使用chkconfig查看vsftpd是否看机启动时候看不到启动项,用systemctl 才看到自己想要的结果 1 总结 from:https://linux.cn/article-5926- ...

  3. (转)linux中项目部署和日志查看

    1 查找进程 ps -ef | grep java   查看所有关于java的进程 root     17540     1  0  2009 ?        01:42:27 /usr/java/ ...

  4. iOS 使用 socket 即时通信(非第三方库)

    其实写这个socket一开始我是拒绝的. 因为大家学C 语言和linux基础时肯定都有接触,客户端和服务端的通信也都了解过,加上现在很多开放的第三方库都不需要我们来操作底层的通信. 但是来了!!! 但 ...

  5. JStorm与Storm源码分析(四)--均衡调度器,EvenScheduler

    EvenScheduler同DefaultScheduler一样,同样实现了IScheduler接口, 由下面代码可以看出: (ns backtype.storm.scheduler.EvenSche ...

  6. [Tyvj 1730] 二逼平衡树

    先来一发题面QwQ [TYVJ1730]二逼平衡树 Time Limit:2 s   Memory Limit:512 MB Description 您需要写一种数据结构(可参考题目标题),来维护一个 ...

  7. C++ STL Binary search详解

    一.解释 以前遇到二分的题目都是手动实现二分,不得不说错误比较多,关于返回值,关于区间的左闭右开等很容易出错,最近做题发现直接使用STL中的二分函数方便快捷还不会出错,不过对于没有接触过的同学,二分函 ...

  8. 如何恢复未释放租约的HDFS文件

    之前有文章介绍过HDFS租约带来的问题,导致spark应用无法正常读取文件,只能将异常文件找出并且删除后,任务才能继续执行. 但是删除文件实在是下下策,而且文件本身其实并未损坏,只是因为已经close ...

  9. Handler实现线程之间的通信-下载文件动态更新进度条

    1. 原理 每一个线程对应一个消息队列MessageQueue,实现线程之间的通信,可通过Handler对象将数据装进Message中,再将消息加入消息队列,而后线程会依次处理消息队列中的消息. 2. ...

  10. ABP+AdminLTE+Bootstrap Table权限管理系统第十节--AdminLTE模板菜单处理

    上节我们把布局页,也有的临时的菜单,但是菜单不是应该动态加载的么?,所以我们这节来写菜单.首先我们看一下AdminLTE源码里面的菜单以及结构. <aside class="main- ...