1161 - Extreme GCD
| Time Limit: 1 second(s) | Memory Limit: 32 MB |
All of you know that GCD means the greatest common divisor. So, you must have thought that this problem requires finding some sort of GCD. Don't worry, you are absolutely right!
Given N positive integers, not necessarily distinct, how many ways you can take 4 integers from the N numbers such that their GCD is 1.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with an integer N (4 ≤ N ≤ 10000). The next line contains N integers separated by spaces. The integers will be positive and not greater than 10000.
Output
For each case, print the case number and the number of ways you can take the integers as mentioned above.
Sample Input |
Output for Sample Input |
|
3 4 2 4 6 1 5 1 2 4 6 8 10 12 46 100 131 5 6 7 8 9 10 |
Case 1: 1 Case 2: 4 Case 3: 195 |
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 bool prime[10005]= {0};
12 int ans[10005];
13 int aa[10005];
14 int bt[10005];
15 int cc[10005]= {0};
16 bool dd[10005]= {0};
17 queue<int>que;
18 int main(void)
19 {
20 int i,j,k;
21 for(i=2; i<200; i++)
22 {
23 for(j=i; i*j<=10000; j++)
24 {
25 prime[i*j]=true;
26 }
27 }
28 int cnt=0;
29 for(i=2; i<=10000; i++)
30 {
31 if(!prime[i])
32 {
33 ans[cnt++]=i;
34 }
35 }int d;
36 cin>>d;int s;
37 for(s=1;s<=d;s++)
38 { cin>>k;
39 memset(bt,0,sizeof(bt));
40 for(i=0; i<k; i++)
41 {
42 scanf("%d",&aa[i]);
43 }
44 for(i=0; i<k; i++)
45 {
46 int nn=aa[i];
47 int t=0;
48 int flag=0;
49 while(nn>1)
50 {
51 if(flag==0&&nn%ans[t]==0)
52 {
53 flag=1;
54 que.push(ans[t]);
55 nn/=ans[t];
56 }
57 else if(nn%ans[t]==0)
58 {
59 nn/=ans[t];
60 flag=1;
61 }
62 else
63 {
64 flag=0;
65 t++;
66 }
67 }
68 if(nn>1)
69 {
70 que.push(nn);
71 }
72 int xx=0;
73 while(!que.empty())
74 {
75 cc[xx++]=que.front();
76 que.pop();
77 }
78 int x;
79 int y;
80 for(x=1; x<=(1<<xx)-1; x++)
81 {
82 int ak=1;
83 int vv=0;
84 for(j=0; j<xx; j++)
85 {
86 if(x&(1<<j))
87 {
88 vv++;
89 ak*=cc[j];
90 }
91 }
92 bt[ak]+=1;
93 if(vv%2)
94 dd[ak]=true;
95 }
96 }
97 LL sum=0;
98 LL sum1=0;
99 for(i=2; i<=10000; i++)
100 {
101 if(bt[i]>=4)
102 {
103 LL nn=(LL)bt[i]*(LL)(bt[i]-1)*(LL)(bt[i]-2)*(LL)(bt[i]-3)/24;
104 if(dd[i])
105 sum+=nn;
106 else sum-=nn;
107 }
108 }
109 sum1=(LL)k*(LL)(k-1)*(LL)(k-2)*(LL)(k-3)/24;
110 sum1-=sum;printf("Case %d: ",s);
111 printf("%lld\n",sum1);
112 }
113 return 0;
114 }
1161 - Extreme GCD的更多相关文章
- LightOJ 1161 - Extreme GCD 容斥
题意:给你n个数[4,10000],问在其中任意选四个其GCD值为1的情况有几种. 思路:GCD为1的情况很简单 即各个数没有相同的质因数,所以求所有出现过的质因数次数再容斥一下-- 很可惜是错的,因 ...
- spoj 3871. GCD Extreme 欧拉+积性函数
3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数
/** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...
- USACO GCD Extreme(II)
题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- CSS相关,手画三角形,正方形,扇形
三角形 实现一个三角形 <!DOCTYPE html> <html> <head> <title>三角形</title> <style ...
- HTML5 之 FileReader 的使用 (二) (网页上图片拖拽并且预显示可在这里学到) [转载]
转载至 : http://www.360doc.com/content/14/0214/18/1457948_352511645.shtml FileReader 资料(英文): https://de ...
- 【leetcode】986. Interval List Intersections (双指针)
You are given two lists of closed intervals, firstList and secondList, where firstList[i] = [starti, ...
- haproxy动态增减主机与keepalived高级应用
一:本文将详细介绍haproxy的配置使用以及高级功能的使用,比如通过haproxy进行动态添加删除负载集群中的后端web服务器的指定主机,另外将详细介绍keepalived的详细配置方法.配置实例及 ...
- 接口测试 python+PyCharm 环境搭建
1.配置Python环境变量 a:我的电脑->属性->高级系统设置->环境变量->系统变量中的PATH变量. 变量名:PATH 修改变量值为:;C:\Python27 ...
- Does compiler create default constructor when we write our own?
In C++, compiler by default creates default constructor for every class. But, if we define our own c ...
- 解决 nginx: [error] invalid PID number "" in "/usr/local/nginx/logs/nginx.pid"
使用/usr/local/nginx/sbin/nginx -s reload 重新读取配置文件出错 [root@localhost nginx]/usr/local/nginx/sbin/nginx ...
- vue 键盘事件keyup/keydoen
使用: <!DOCTYPE html> <html> <head> <title></title> <meta charset=&qu ...
- CentOs 7 yum 安装Nginx
打开官网下载文档:http://nginx.org/en/download.html 2进入操作系统 centOs 7,建立文件夹 nginx ,进入nginx ,拷贝 上图1编辑命令:/etc/yu ...
- angular过滤器在html和js中的使用
在HTML中使用格式为:{{数据 | 过滤器名称:条件一:条件二--}}:过滤条件间使用:隔开 例如: 在代码中一般格式为: 变量 = $filter("过滤器名称")(被过滤数 ...