GridSearchCV 参数
GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)
Parameters:
estimator:所使用的分类器,或者pipeline
param_grid:值为字典或者列表,即需要最优化的参数的取值
scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。
n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。
pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次
iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。
cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。
refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。
Attributes:
best_estimator_:效果最好的分类器
best_score_:成员提供优化过程期间观察到的最好的评分
best_params_:描述了已取得最佳结果的参数的组合
best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。
Methods:
decision_function:使用找到的参数最好的分类器调用decision_function。
fit(X, y=None, groups=None, **fit_params):训练
get_params(deep=True):获取这个估计器的参数。
predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)
predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)
predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)
score(X, y=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。
transform(X):调用最优分类器进行对X的转换。
再写写最近的感受吧:最近一直在忙着秋招,情绪不是很高涨,(自己是数学专业的,自学的Python以及计算机的其他知识,不想当老师,也因为各种原因不想考研)因为没有看到希望,整天都在看书,刷题,希望能够得到某一位公司的垂青!!!一会要去参加一场宣讲会,希望会有好的收获吧!!!希望未来可期,虽然我不是学计算机的,但是我有学习能力,我肯努力呀!希望有人能够看到我!!!
GridSearchCV 参数的更多相关文章
- 集成树模型使用自动搜索模块GridSearchCV,stacking
一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...
- 【sklearn】网格搜索 from sklearn.model_selection import GridSearchCV
GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数 # 不常用的参数 pre_dispatch 没看懂 refit 默认为Tr ...
- scikit-learning教程(三)使用文本数据
使用文本数据 本指南的目标是探讨scikit-learn 一个实际任务中的一些主要工具:分析二十个不同主题的文本文档(新闻组帖子)集合. 在本节中,我们将看到如何: 加载文件内容和类别 提取适用于机器 ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型
import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...
- GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...
随机推荐
- Spring-03 依赖注入(DI)
Spring-03 依赖注入(DI) 依赖注入(DI) 依赖注入(Dependency Injection,DI). 依赖 : 指Bean对象的创建依赖于容器,Bean对象的依赖资源. 注入 : 指B ...
- 第七届蓝桥杯JavaB组——第7题剪邮票
题目: 剪邮票 如[图1.jpg], 有12张连在一起的12生肖的邮票. 现在你要从中剪下5张来,要求必须是连着的. (仅仅连接一个角不算相连) 比如,[图2.jpg],[图3.jpg]中,粉红色所示 ...
- es6 快速入门 系列
es6 快速入门(未完结,持续更新中...) 前言 为什么要学习es6 es6对于所有javaScript开发者来说,非常重要 未来,es6将构成javaScript应用程序的基础 es6中很多特性, ...
- Git:使用远程仓库
远程仓库可使用Github.Gitee,或自建Gitlab.Gogs服务器,这里使用Github. 配置本地用户名和邮箱 # 配置本地用户的用户名邮箱(保存在用户.gitconfig文件) $ git ...
- 手把手教你SpringBoot2整合Redis
此文仅为初学java的同学学习,大佬请勿喷,文末我会附上完整代码包供大家参考 redis的搭建教程此处略过,大家自行百度,本文的教程开始: 一.先在pom.xml中添加相关依赖 <!--redi ...
- PAT-1132(Cut Integer )数的拆分+简单题
Cut Integer PAT-1132 #include<iostream> #include<cstring> #include<string> #includ ...
- vs2019远程调试
VS2019远程调试 这几天遇到个很是纠结的问题,同样的源代码,放在测试服务器,完美运行.但是上线正式环境就是死活显示不出来.于是想到了微软的远程调试功能,这里用VS2019举例. 下载远程访问工具 ...
- [实战]ASP.NET Padding Oracle信息泄露漏洞
前言 这个漏洞是很多年前的了,刚好碰到网站有这个漏洞,利用一下也记录一下.具体原理请搜索学习,反正我不会. 推荐看这里,写得很清楚:http://www.91ri.org/6715.html 工具 p ...
- 由于makefile编译所有子目录中 sed 's,/($*/)/.o[ :],/1.o $@ : ,g' <$@ > $@ 的解释
这个语句分为好几层,我们一层一层来看 1. sed 's,/($*/)/.o[ :],/1.o $@ : ,g' <$@ > $@ 首先看加粗这一层,$@表示目标参数中的.d文件, '&l ...
- 关于djangorestframework
djangorestframework技术文档 restfrmework规范 开发模式 普通开发为前端和后端代码放在一起写 前后端分离为前后端交互统统为ajax进行交互 前后端分离 优点:分工明细,节 ...