GridSearchCV 参数
GridSearchCV
(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)
Parameters:
estimator:所使用的分类器,或者pipeline
param_grid:值为字典或者列表,即需要最优化的参数的取值
scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。
n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。
pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次
iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。
cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。
refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。
Attributes:
best_estimator_:效果最好的分类器
best_score_:成员提供优化过程期间观察到的最好的评分
best_params_:描述了已取得最佳结果的参数的组合
best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。
Methods:
decision_function:使用找到的参数最好的分类器调用decision_function。
fit
(X, y=None, groups=None, **fit_params):训练
get_params
(deep=True):获取这个估计器的参数。
predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)
predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)
predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)
score(X, y=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。
transform(X):调用最优分类器进行对X的转换。
再写写最近的感受吧:最近一直在忙着秋招,情绪不是很高涨,(自己是数学专业的,自学的Python以及计算机的其他知识,不想当老师,也因为各种原因不想考研)因为没有看到希望,整天都在看书,刷题,希望能够得到某一位公司的垂青!!!一会要去参加一场宣讲会,希望会有好的收获吧!!!希望未来可期,虽然我不是学计算机的,但是我有学习能力,我肯努力呀!希望有人能够看到我!!!
GridSearchCV 参数的更多相关文章
- 集成树模型使用自动搜索模块GridSearchCV,stacking
一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...
- 【sklearn】网格搜索 from sklearn.model_selection import GridSearchCV
GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数 # 不常用的参数 pre_dispatch 没看懂 refit 默认为Tr ...
- scikit-learning教程(三)使用文本数据
使用文本数据 本指南的目标是探讨scikit-learn 一个实际任务中的一些主要工具:分析二十个不同主题的文本文档(新闻组帖子)集合. 在本节中,我们将看到如何: 加载文件内容和类别 提取适用于机器 ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型
import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...
- GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...
随机推荐
- Vue框架-组件的概念及使用
目录 一.Vue组件 1. 组件分类 1.1 根组件 1.2 局部组件 1.3 全局组件 2. 组件的特点 3. 如何创建组件 4. 组件的数据局部化 5. 组件传参·父传子 6. 组件传参·子传父 ...
- Sapper:迈向理想的 Web 应用框架
扎稳阵脚,再进一步. 注意:原文发表于2017-12-31,随着框架不断演进,部分内容可能已不适用. 给迫不及待的小伙伴们的快速入门:Sapper 文档 和快速模板 starter template ...
- 一文吃透如何部署kubernetes高可用集群
使用 k8s 官方提供的部署工具 kubeadm 自动安装,需要在 master 和 node 节点上安装 docker 等组件,然后初始化,把管理端的控制服务和 node 上的服务都以 pod 的方 ...
- Django练习遇到的错误记录
_reverse_with_prefix() argument after ** must be a mapping, not set 错误代码: def get_absolute_url(self) ...
- SpringBoot(一):使用IDEA快速搭建一个SpringBoot项目(详细)
环境: JDK1.8 Maven:3.5.4 1.打开IDEA,右上角选择File→New→Project 选择Spring Initializr(使用IDEA自带的插件创建需要电脑联网) 2.点 ...
- wxWidgets源码分析(8) - MVC架构
目录 MVC架构 wxDocManager文档管理器 模板类创建文档对象 视图对象的创建 创建顺序 框架菜单命令的执行过程 wxDocParentFrame菜单入口 wxDocManager类的处理 ...
- vue3中使用axios如何去请求数据
在vue2中一般放在created中,但是在vue3中取消了created生命周期,请求方式有两种 直接在setup中去获取数据 setup(props) { const data = reactiv ...
- 8.Vue组件三---slot插槽
主要内容: 1. 什么是插槽 2. 组件的插槽 3. 插槽的使用方法 4. 插槽的具名 5. 变量的作用域 6. slot的作用域 一. 什么是插槽呢? 1. 生活中的插槽有哪些呢? usb插槽, ...
- POJ-2349(kruskal算法+最小生成树中最大边的长度)
Arctic POJ-2349 这题是最小生成树的变形题目.题目的意思是已经有s个卫星频道,这几个卫星频道可以构成一部分的网络,而且不用费用,剩下的需要靠d的卫星接收器.题目要求的就是最小生成树中,最 ...
- 13. Vue CLI脚手架
一. Vue CLI 介绍 1. 什么是Vue CLI? Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统.Vue CLI 致力于将 Vue 生态中的工具基础标准化.它确保了各种构建工 ...