GridSearchCV 参数
GridSearchCV
(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)
Parameters:
estimator:所使用的分类器,或者pipeline
param_grid:值为字典或者列表,即需要最优化的参数的取值
scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。
n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。
pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次
iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。
cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。
refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。
Attributes:
best_estimator_:效果最好的分类器
best_score_:成员提供优化过程期间观察到的最好的评分
best_params_:描述了已取得最佳结果的参数的组合
best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。
Methods:
decision_function:使用找到的参数最好的分类器调用decision_function。
fit
(X, y=None, groups=None, **fit_params):训练
get_params
(deep=True):获取这个估计器的参数。
predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)
predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)
predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)
score(X, y=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。
transform(X):调用最优分类器进行对X的转换。
再写写最近的感受吧:最近一直在忙着秋招,情绪不是很高涨,(自己是数学专业的,自学的Python以及计算机的其他知识,不想当老师,也因为各种原因不想考研)因为没有看到希望,整天都在看书,刷题,希望能够得到某一位公司的垂青!!!一会要去参加一场宣讲会,希望会有好的收获吧!!!希望未来可期,虽然我不是学计算机的,但是我有学习能力,我肯努力呀!希望有人能够看到我!!!
GridSearchCV 参数的更多相关文章
- 集成树模型使用自动搜索模块GridSearchCV,stacking
一. GridSearchCV参数介绍 导入模块: from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参 ...
- 【sklearn】网格搜索 from sklearn.model_selection import GridSearchCV
GridSearchCV用于系统地遍历模型的多种参数组合,通过交叉验证确定最佳参数. 1.GridSearchCV参数 # 不常用的参数 pre_dispatch 没看懂 refit 默认为Tr ...
- scikit-learning教程(三)使用文本数据
使用文本数据 本指南的目标是探讨scikit-learn 一个实际任务中的一些主要工具:分析二十个不同主题的文本文档(新闻组帖子)集合. 在本节中,我们将看到如何: 加载文件内容和类别 提取适用于机器 ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型
import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...
- GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...
随机推荐
- CDN失效时使用本地js文件:window.jQuery || document.write
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></ ...
- Layui 源码浅读(模块加载原理)
经典开场 // Layui ;! function (win) { var Lay = function () { this.v = '2.5.5'; }; win.layui = new Lay() ...
- 剑指 Offer 55 - II. 平衡二叉树 + 平衡二叉树(AVL)的判断
剑指 Offer 55 - II. 平衡二叉树 Offer_55_2 题目描述 方法一:使用后序遍历+边遍历边判断 package com.walegarrett.offer; /** * @Auth ...
- apicloud打包的ios证书的获取方法
apicloud云编译的时候,需要测试证书或者正式证书进行编译. 那么这个证书是怎么来的呢?通过什么渠道可以获取呢? 这里我介绍下使用香蕉云编这个在线工具来生成: 1.登录香蕉云编,生成证书的csr文 ...
- Python爬虫学习二------爬虫基本原理
爬虫是什么?爬虫其实就是获取网页的内容经过解析来获得有用数据并将数据存储到数据库中的程序. 基本步骤: 1.获取网页的内容,通过构造请求给服务器端,让服务器端认为是真正的浏览器在请求,于是返回响应.p ...
- 总结数据科学家常用的Python库
概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...
- java实现一个点餐系统
转载于blog.csdn.net/weixin_44219955 项目大体框架 菜品类(菜品id,菜品名,菜品类型,上架时间,单价,月销售,总数量) 管理员类(管理员id,账号,密码) 客户类(客户i ...
- k8s删除节点
k8s 删除节点 线上环境 # ctl get nodes NAME STATUS ROLES AGE VERSION 10.0.0.123 Ready <none> 104d v1.20 ...
- java面试一日一题:java线程池
问题:请讲下java中的线程池 分析:在面试中经常问到线程池的问题,要掌握其基本概念,使用方法,注意事项等,引申下tomcat中默认的线程数是多少 回答要点: 主要从以下几点去考虑, 1.为什么要使用 ...
- css详解position五种属性用法及其含义
position(定位) position - 作为css属性三巨头(position.display.float)之一,它的作用是用来决定元素在文档中的定位方式.其属性值有五种,分别是 - stat ...