Atcoder 题面传送门 & 洛谷题面传送门

首先 \(n^5\) 的暴力非常容易想,设 \(dp_{a,b,c,d}\) 表示以 \((a,b)\) 为左上角,\((c,d)\) 为右下角的矩阵的 complexity。枚举断点转移即可,时间复杂度 \(n^5\)。

我们考虑优化这个 \(dp\),首先比较明显的一点:这个 \(dp\) 状态满足单调性,也就是说 \(\forall d_1<d_2,dp_{a,b,c,d_1}\le dp_{a,b,c,d_2}\),也就是说对于某个 \(dp\) 状态 \(dp_{a,b,c,d}\),假设最大的满足 \(dp_{a,b,c,k}<dp_{a,b,k+1,d}\) 的 \(k\) 为 \(r\),那么我们从行处切开的决策点 \(k\) 要么为 \(r\),要么为 \(r+1\),这个异常好想,于是我们可以二分这个 \(r\) 然后从 \(r\) 和 \(r+1\) 转移即可,时间复杂度 \(n^4\log n\),用双针也可优化到 \(n^4\)。

不过仅仅进行这个优化是远远不够的,我们还需进一步优化。这一步就有亿点考验观察力了,不难发现这个答案不会太大,手玩几组数据可看出这个答案最大不过 \(\log n\) 级别(当然如果硬要说理的话用二维线段树的思想也可以解释),也就是说我们 \(dp\) 数组的值域最大大概在 \(16\) 左右。所以我们可以很自然地想到一个类似于函数里面“交换定义域和值域”的思路:将答案放入 \(dp\) 状态中。

我们重新设计 \(dp\) 状态。设 \(f_{x,l,r,c}\) 表示最大的 \(y\) 满足 \(dp_{x,y,l,r}\leq c\)。转移分两种情况,横着切或者竖着切。如果我们横着切,那么我们肯定会贪心地选择最大的 \(dp_{x,y,l,r}\leq c-1\) 的 \(y\) 作为分割点,也就是说 \(f_{x,l,r,c}\leftarrow f_{f_{x,l,r,c-1}+1,l,r,c}\)。如果我们竖着切,考虑枚举断点 \(k\) 并从 \(k\) 与 \(k+1\) 之间切开,那么 \(dp_{x,y,l,r}\leq c\) 就意味着 \(dp_{x,y,l,k}\leq c-1,dp_{x,y,k+1,r}\leq c-1\),故我们用 \(\min(f_{x,l,k,c-1},f_{x,k+1,r,c-1})\) 更新 \(f_{x,l,r,c}\)。这样暴力更新还是 \(n^4\log n\) 的。不过还是按照之前的套路,由 \(dp\) 数组满足单调性也可推出 \(f\) 数组也满足单调性,即 \(\forall r_1<r_2,f_{x,l,r_1,c}\ge f_{x,l,r_2,c}\),于是我们二分断点转移即可,复杂度就降到了 \(n^3\log^2n\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=185;
const int MAXANS=17;
int n,m,sum[MAXN+5][MAXN+5];char s[MAXN+5][MAXN+5];
int f[MAXN+5][MAXN+5][MAXN+5][MAXANS+1];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++){
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+(s[i][j]=='.');
}
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) for(int k=j;k<=m;k++){
int l=i,r=n,p=i-1;
while(l<=r){
int mid=l+r>>1,ss=sum[mid][k]-sum[mid][j-1]-sum[i-1][k]+sum[i-1][j-1];
if(ss==0||ss==(mid-i+1)*(k-j+1)) p=mid,l=mid+1;
else r=mid-1;
} f[i][j][k][0]=p;
}
for(int p=1;p<=MAXANS;p++) for(int i=1;i<=n;i++) for(int len=1;len<=m;len++)
for(int j1=1,j2=len;j2<=m;j1++,j2++){
f[i][j1][j2][p]=f[i][j1][j2][p-1];
chkmax(f[i][j1][j2][p],f[f[i][j1][j2][p-1]+1][j1][j2][p-1]);
if(f[i][j1][j2][p]==n) continue;
int l=j1,r=j2-1;
while(l<=r){
int mid=l+r>>1;
chkmax(f[i][j1][j2][p],min(f[i][j1][mid][p-1],f[i][mid+1][j2][p-1]));
if(f[i][j1][mid][p-1]<f[i][mid+1][j2][p-1]) r=mid-1;
else l=mid+1;
}
}
int ans=-1;
for(int i=0;i<=MAXANS;i++) if(f[1][1][m][i]<n) chkmax(ans,i);
printf("%d\n",ans+1);
return 0;
}

Atcoder Grand Contest 033 D - Complexity(dp)的更多相关文章

  1. AtCoder Grand Contest 031 B - Reversi(DP)

    B - Reversi 题目链接:https://atcoder.jp/contests/agc031/tasks/agc031_b 题意: 给出n个数,然后现在你可以对一段区间修改成相同的值,前提是 ...

  2. Atcoder Grand Contest 021 F - Trinity(dp+NTT)

    Atcoder 题面传送门 & 洛谷题面传送门 首先我们考虑设 \(dp_{i,j}\) 表示对于一个 \(i\times j\) 的网格,其每行都至少有一个黑格的合法的三元组 \((A,B, ...

  3. Atcoder Regular Contest 089 D - ColoringBalls(DP)

    Atcoder 题面传送门 & 洛谷题面传送门 神仙题. 在下文中,方便起见,用 R/B 表示颜色序列中球的颜色,用 r/b 表示染色序列中将连续的区间染成的颜色. 首先碰到这一类计算有多少个 ...

  4. AtCoder Grand Contest 032-B - Balanced Neighbors (构造)

    Time Limit: 2 sec / Memory Limit: 1024 MB Score : 700700 points Problem Statement You are given an i ...

  5. AtCoder Grand Contest 012 B - Splatter Painting(dp)

    Time limit : 2sec / Memory limit : 256MB Score : 700 points Problem Statement Squid loves painting v ...

  6. Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...

  7. AtCoder Grand Contest 033

    为什么ABC那么多?建议Atcoder多出些ARC/AGC,好不容易才轮到AGC…… A 签到.就是以黑点为源点做多元最短路,由于边长是1直接bfs就好了,求最长路径. #include<bit ...

  8. Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)

    Atcoder 题面传送门 & 洛谷题面传送门 我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限( 首先按照套路 Min-Max 容斥,\(a ...

  9. AtCoder Grand Contest 033 题解

    传送门 我比赛的时候怕不是在睡觉啊-- \(A\ Darker\ and\ Darker\) 我是不是想得太复杂了--根本没必要像我这样做吧-- 首先问题可以转化成令\(p_{i,j}\)表示到\(( ...

随机推荐

  1. 3.2 Dependencies of the Projects in the Solution 解决方案中项目间的依赖项

    3.2 Dependencies of the Projects in the Solution 解决方案中项目间的依赖项 The diagram below shows the essential ...

  2. 【UE4 设计模式】原型模式 Prototype Pattern

    概述 描述 使用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象.如孙悟空猴毛分身.鸣人影之分身.剑光分化.无限剑制 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象, ...

  3. tomcat内存马原理解析及实现

    内存马 简介 ​ Webshell内存马,是在内存中写入恶意后门和木马并执行,达到远程控制Web服务器的一类内存马,其瞄准了企业的对外窗口:网站.应用.但传统的Webshell都是基于文件类型的,黑客 ...

  4. Scrum Meeting 0429

    零.说明 日期:2021-4-29 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成部分后端管理 ...

  5. [no code][scrum meeting] Beta 1

    $( "#cnblogs_post_body" ).catalog() 会议纪要 会议在微信群进行:集体反思alpha阶段博客分数尤其是scrum博客分数低的问题,讨论beta阶段 ...

  6. logstash的mutate过滤器的使用

    logstash的mutate过滤器的使用 一.背景 二.需求 三.实现步骤 1.安装 `csv codec` 插件 2.准备需要读取的文件数据 3.编写 pipeline ,读取和输出数据 4.mu ...

  7. Java-基础-LinkedList

    1. 简介 LinkedList 同时实现了List和Deque接口,也就是说它既可以看作是一个顺序容器,又可以看作是双向队列. 既然是双向列表,那么它的每个数据节点都一定有两个指针,分别指向它的前驱 ...

  8. IPv6(诞生原因、数据报格式、与IPv4的不同、地址表现形式、基本地址类型、IPv6与IPv4的过渡策略)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105297642 学习课程:<2019王道考研计算机网络> 学习目的 ...

  9. TCP之拥塞窗口原理

    学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小(这个字段越大说明网络吞吐量越高),从而控制发送方的发送速度. 拥塞 ...

  10. Java并发:Condition接口

    Condition 接口与 Lock 配合实现了等待 / 通知模式,这个和 Object 的监视器方法(wait.notify.notifyAll 等方法)一样,都是实现了等待 / 通知模式,但这两者 ...