考虑枚举加油的位置,当确定某次在第$i$个位置加油后,且下一次到$j$加油,那么$i$到$j$必然会选择不超过$c_{i}$条边且最长的路径,记作$d_{i,j}$

如果能求出$d_{i,j}$,再设$f_{q,i}$表示$q$元(恰好用完)从$i$出发的最长路,枚举$i$之后那一次加油点即可转移,由于$q\le n^{2}$,因此这里的复杂度为$o(n^{4})$

接下来,对其求一次前缀max再二分,即可对询问做到$o(t\log_{2}q)$的复杂度

现在还有一个问题,考虑如何预处理最开始的$d_{i,j}$

倍增,求出从$i$出发,走不超过$2^{k}$次走到$j$的最长路,通过枚举走$2^{k-1}$时的点来转移,可以做到$o(n^{3}\log_{2}c_{i})$

类似的,再对每一个点$i$做一次dp,同样枚举中专点转移即可,时间复杂度也是$o(n^{3}\log_{2}c_{i})$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define M 1005
5 #define K 100005
6 struct ji{
7 int nex,to,len;
8 }edge[M];
9 struct qu{
10 int s,q,d;
11 }q[K];
12 int E,n,m,t,x,y,z,head[N],p[N],c[N],g[21][N][N],ff[N],f[N][N],ans[N*N][N];
13 void add(int x,int y,int z){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 edge[E].len=z;
17 head[x]=E++;
18 }
19 int main(){
20 scanf("%d%d%d%d",&n,&m,&c[0],&t);
21 for(int i=1;i<=n;i++){
22 scanf("%d%d",&p[i],&c[i]);
23 c[i]=min(c[i],c[0]);
24 if (!p[i]){
25 printf("orz");
26 return 0;
27 }
28 }
29 memset(head,-1,sizeof(head));
30 for(int i=1;i<=m;i++){
31 scanf("%d%d%d",&x,&y,&z);
32 add(x,y,z);
33 }
34 memset(g,-0x3f,sizeof(g));
35 for(int i=1;i<=n;i++){
36 g[0][i][i]=0;
37 for(int j=head[i];j!=-1;j=edge[j].nex)g[0][i][edge[j].to]=max(g[0][i][edge[j].to],edge[j].len);
38 }
39 for(int i=1;i<=20;i++)
40 for(int x=1;x<=n;x++)
41 for(int y=1;y<=n;y++)
42 for(int z=1;z<=n;z++)
43 g[i][x][y]=max(g[i][x][y],g[i-1][x][z]+g[i-1][z][y]);
44 memset(f,-1,sizeof(f));
45 for(int i=1;i<=n;i++)f[i][i]=0;
46 for(int x=1;x<=n;x++)
47 for(int i=0;i<=20;i++)
48 if (c[x]&(1<<i)){
49 for(int y=1;y<=n;y++)ff[y]=f[x][y];
50 for(int y=1;y<=n;y++)
51 for(int z=1;z<=n;z++)
52 if (ff[z]!=-1)f[x][y]=max(f[x][y],ff[z]+g[i][z][y]);
53 }
54 memset(ans,-0x3f,sizeof(ans));
55 for(int i=1;i<=n;i++)ans[0][i]=0;
56 for(int i=1;i<=n*n;i++)
57 for(int x=1;x<=n;x++)
58 if (p[x]<=i)
59 for(int y=1;y<=n;y++)
60 if (f[x][y]!=-1)ans[i][x]=max(ans[i][x],ans[i-p[x]][y]+f[x][y]);//o(n^4)
61 for(int i=1;i<=n*n;i++)
62 for(int j=1;j<=n;j++)ans[i][j]=max(ans[i][j],ans[i-1][j]);
63 for(int i=1;i<=t;i++){
64 scanf("%d%d%d",&x,&y,&z);
65 if (ans[y][x]<z)printf("-1\n");
66 else{
67 int l=0,r=y;
68 while (l<r){
69 int mid=(l+r>>1);
70 if (ans[mid][x]>=z)r=mid;
71 else l=mid+1;
72 }
73 printf("%d\n",y-l);
74 }
75 }
76 return 0;
77 }

[loj539]旅游路线的更多相关文章

  1. 「LibreOJ NOIP Round #1」旅游路线

    Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...

  2. [solution]JZOJ-5838 旅游路线

    [solution] JZOJ-5838 旅游路线 Time Limits 1000ms,Memory Limits 128MB 题面 Description GZOI队员们到X镇游玩.X镇是一个很特 ...

  3. JZOJ 5838. 旅游路线 最大子段和

    5838. 旅游路线 Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limits   Goto ProblemSet Descrip ...

  4. [loj#539][LibreOJ NOIP Round #1]旅游路线_倍增_dp

    「LibreOJ NOIP Round #1」旅游路线 题目链接:https://loj.ac/problem/539 题解: 这个题就很神奇 首先大力$dp$很好想,因为可以把一维放到状态里以取消后 ...

  5. 带你找到五一最省的旅游路线【dijkstra算法推导详解】

    前言 五一快到了,小张准备去旅游了! 查了查到各地的机票 因为今年被扣工资扣得很惨,小张手头不是很宽裕,必须精打细算.他想弄清去各个城市的最低开销. [嗯,不用考虑回来的开销.小张准备找警察叔叔说自己 ...

  6. 带你找到五一最省的旅游路线【dijkstra算法代码实现】

    算法推导过程参见[dijkstra算法推导详解] 此文为[dijkstra算法代码实现] https://www.cnblogs.com/Halburt/p/10767389.html package ...

  7. LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)

    哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...

  8. 【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线

    [题意]给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数. n<=100,m<=1000, ...

  9. LOJ#539. 「LibreOJ NOIP Round #1」旅游路线

    n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...

随机推荐

  1. Java面向对象/面向过程

    面向过程 第一步做啥 第二部做啥 依此类推 层层递进 比如要弄一辆自行车 面向过程 搞车轮子 车链子 一步步来 如果有个地方坏了 说不定整个车都要拆了重新弄 扩展性很差 维护性也很差 速度比较快 面向 ...

  2. 演员 Or 开发者的自我修养

    演员 Or 开发者的自我修养 时至今日,我都还是很怀念小时候与一群玩伴编写剧本.拍摄,那时候的我还有一个远大的"白日梦"--成为一名导演.很可惜,终究是"白日梦" ...

  3. 试题 算法训练 最大最小公倍数 java题解

    资源限制 时间限制:1.0s   内存限制:256.0MB 问题描述 已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少. 输入格式 输入一个正整数N. 输出格式 输出一个整数 ...

  4. RA-28000 账号被锁定的解决办法

    ORA-28000 账号被锁定的解决办法 错误场景:当使用sqlplus进行登录时报错:ORA-28000 账号被锁定.错误原因:由于oracle 11g 在默认在default概要文件中设置了密码最 ...

  5. 解决GitHub访问慢

    话不多说,上干货~~~ 1. 打开 http://tool.chinaz.com/dns/ ,在输入框中填写 github.com,然后点击检测按钮,会列出响应ip,如图: 2. 找到hosts文件, ...

  6. sql递归查询部门数据

    1 with cte as 2 ( 3 select a.DepartCode,a.DepartName,a.ParentDepartCode from tbDeparts a where Paren ...

  7. Ubuntu 用户管理/权限管理

    Ubuntu 用户管理/权限管理 小小记录一下 Ubuntu 下用户/权限管理常用的一些命令 用户管理 组管理 文件权限 给用户添加 sudo 权限 给用户添加 sudo 权限 首先先给出几个文件 / ...

  8. Scrum Meeting 0425

    零.说明 日期:2021-4-25 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成登录.注册A ...

  9. [技术博客] K-Means算法

    遇到的问题 在对微软\(OCR\)的\(api\)进行测试的过程中,我发现有时候它并不能分析出一个表格的形态,也就是说不知道每个文本对应在表格中的第几行第几列.但是它可以较为准确的给出这些文本的坐标. ...

  10. Noip模拟8 2021.6.17

    T1 星际旅行 仔细一看,发现像一个欧拉路(简称一笔画). 满足"可以一笔画"的条件是: 1.所有点都有偶数条连边; 2.有偶数个点连奇数条边; 满足以上两个条件的任意一个即可一笔 ...