[loj539]旅游路线
考虑枚举加油的位置,当确定某次在第$i$个位置加油后,且下一次到$j$加油,那么$i$到$j$必然会选择不超过$c_{i}$条边且最长的路径,记作$d_{i,j}$
如果能求出$d_{i,j}$,再设$f_{q,i}$表示$q$元(恰好用完)从$i$出发的最长路,枚举$i$之后那一次加油点即可转移,由于$q\le n^{2}$,因此这里的复杂度为$o(n^{4})$
接下来,对其求一次前缀max再二分,即可对询问做到$o(t\log_{2}q)$的复杂度
现在还有一个问题,考虑如何预处理最开始的$d_{i,j}$
倍增,求出从$i$出发,走不超过$2^{k}$次走到$j$的最长路,通过枚举走$2^{k-1}$时的点来转移,可以做到$o(n^{3}\log_{2}c_{i})$
类似的,再对每一个点$i$做一次dp,同样枚举中专点转移即可,时间复杂度也是$o(n^{3}\log_{2}c_{i})$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define M 1005
5 #define K 100005
6 struct ji{
7 int nex,to,len;
8 }edge[M];
9 struct qu{
10 int s,q,d;
11 }q[K];
12 int E,n,m,t,x,y,z,head[N],p[N],c[N],g[21][N][N],ff[N],f[N][N],ans[N*N][N];
13 void add(int x,int y,int z){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 edge[E].len=z;
17 head[x]=E++;
18 }
19 int main(){
20 scanf("%d%d%d%d",&n,&m,&c[0],&t);
21 for(int i=1;i<=n;i++){
22 scanf("%d%d",&p[i],&c[i]);
23 c[i]=min(c[i],c[0]);
24 if (!p[i]){
25 printf("orz");
26 return 0;
27 }
28 }
29 memset(head,-1,sizeof(head));
30 for(int i=1;i<=m;i++){
31 scanf("%d%d%d",&x,&y,&z);
32 add(x,y,z);
33 }
34 memset(g,-0x3f,sizeof(g));
35 for(int i=1;i<=n;i++){
36 g[0][i][i]=0;
37 for(int j=head[i];j!=-1;j=edge[j].nex)g[0][i][edge[j].to]=max(g[0][i][edge[j].to],edge[j].len);
38 }
39 for(int i=1;i<=20;i++)
40 for(int x=1;x<=n;x++)
41 for(int y=1;y<=n;y++)
42 for(int z=1;z<=n;z++)
43 g[i][x][y]=max(g[i][x][y],g[i-1][x][z]+g[i-1][z][y]);
44 memset(f,-1,sizeof(f));
45 for(int i=1;i<=n;i++)f[i][i]=0;
46 for(int x=1;x<=n;x++)
47 for(int i=0;i<=20;i++)
48 if (c[x]&(1<<i)){
49 for(int y=1;y<=n;y++)ff[y]=f[x][y];
50 for(int y=1;y<=n;y++)
51 for(int z=1;z<=n;z++)
52 if (ff[z]!=-1)f[x][y]=max(f[x][y],ff[z]+g[i][z][y]);
53 }
54 memset(ans,-0x3f,sizeof(ans));
55 for(int i=1;i<=n;i++)ans[0][i]=0;
56 for(int i=1;i<=n*n;i++)
57 for(int x=1;x<=n;x++)
58 if (p[x]<=i)
59 for(int y=1;y<=n;y++)
60 if (f[x][y]!=-1)ans[i][x]=max(ans[i][x],ans[i-p[x]][y]+f[x][y]);//o(n^4)
61 for(int i=1;i<=n*n;i++)
62 for(int j=1;j<=n;j++)ans[i][j]=max(ans[i][j],ans[i-1][j]);
63 for(int i=1;i<=t;i++){
64 scanf("%d%d%d",&x,&y,&z);
65 if (ans[y][x]<z)printf("-1\n");
66 else{
67 int l=0,r=y;
68 while (l<r){
69 int mid=(l+r>>1);
70 if (ans[mid][x]>=z)r=mid;
71 else l=mid+1;
72 }
73 printf("%d\n",y-l);
74 }
75 }
76 return 0;
77 }
[loj539]旅游路线的更多相关文章
- 「LibreOJ NOIP Round #1」旅游路线
Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...
- [solution]JZOJ-5838 旅游路线
[solution] JZOJ-5838 旅游路线 Time Limits 1000ms,Memory Limits 128MB 题面 Description GZOI队员们到X镇游玩.X镇是一个很特 ...
- JZOJ 5838. 旅游路线 最大子段和
5838. 旅游路线 Time Limits: 1000 ms Memory Limits: 131072 KB Detailed Limits Goto ProblemSet Descrip ...
- [loj#539][LibreOJ NOIP Round #1]旅游路线_倍增_dp
「LibreOJ NOIP Round #1」旅游路线 题目链接:https://loj.ac/problem/539 题解: 这个题就很神奇 首先大力$dp$很好想,因为可以把一维放到状态里以取消后 ...
- 带你找到五一最省的旅游路线【dijkstra算法推导详解】
前言 五一快到了,小张准备去旅游了! 查了查到各地的机票 因为今年被扣工资扣得很惨,小张手头不是很宽裕,必须精打细算.他想弄清去各个城市的最低开销. [嗯,不用考虑回来的开销.小张准备找警察叔叔说自己 ...
- 带你找到五一最省的旅游路线【dijkstra算法代码实现】
算法推导过程参见[dijkstra算法推导详解] 此文为[dijkstra算法代码实现] https://www.cnblogs.com/Halburt/p/10767389.html package ...
- LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)
哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...
- 【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线
[题意]给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数. n<=100,m<=1000, ...
- LOJ#539. 「LibreOJ NOIP Round #1」旅游路线
n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...
随机推荐
- Java面向对象/面向过程
面向过程 第一步做啥 第二部做啥 依此类推 层层递进 比如要弄一辆自行车 面向过程 搞车轮子 车链子 一步步来 如果有个地方坏了 说不定整个车都要拆了重新弄 扩展性很差 维护性也很差 速度比较快 面向 ...
- AutoCAD云产品平台ForgeViewer格式离线部署思路分析
背景 在上一篇博文中CAD图DWG解析WebGIS可视化技术分析总结提到,利用AutoCAD的自有云产品 Autodesk Forge,能在浏览器中渲染 3D 和 2D 模型数据,实现DWG图形的We ...
- 2020.4.6--UCF Local Programming Contest 2017的正式赛
Problem A : Electric Bill 题目大意:进行电量分级制收费,1000kwh及以下一档收费,1000kwh以上按另一档收费,给出每个人的电量总额,问每人应支付多少钱. 思路:基础i ...
- C#并行编程:Parallel的使用
前言:在C#的System.Threading.Tasks 命名空间中有一个静态的并行类:Parallel,封装了Task的使用,对于执行大量任务提供了非常简便的操作.下面对他的使用进行介绍. 本篇内 ...
- SignalR 在React/GO技术栈的生产应用
哼哧哼哧半年,优化改进了一个运维开发web平台. 本文记录SignalR在react/golang 技术栈的生产小实践. 1. 背景 有个前后端分离的运维开发web平台, 后端会间隔5分钟同步一次数据 ...
- 【数据结构】c语言实现集合的交并差运算
待改写:存储数据类型int-->char 重复的元素可存储 功能上不完善 #include <stdio.h> #include <stdlib.h> typedef s ...
- Less-(38~41) 堆叠注入
首先申明,Less-(38~41)可以采取和Less-(1~4)相同的解法:(一一对应) 然而,他们的漏洞其实更大,我们可以做更多具有破坏性的事情. 代码审计: Less-(38~41): 41的$s ...
- 【UE4】GAMES101 图形学作业3:Blinn-Phong 模型与着色
总览 在这次编程任务中,我们会进一步模拟现代图形技术.我们在代码中添加了Object Loader(用于加载三维模型), Vertex Shader 与Fragment Shader,并且支持了纹理映 ...
- UML快速概述 - All you need to know about UML
UML 是统一建模语言的缩写,就像使用一组图表来可视化软件建模的蓝图(或设计计划).它不仅可以让您彻底评估整个概念,还可以确保团队中的每个人都在同一页面上. UML 图可以组织成两个不同的组. 结 ...
- Sharding-JDBC基本使用,整合Springboot实现分库分表,读写分离
结合上一篇docker部署的mysql主从, 本篇主要讲解SpringBoot项目结合Sharding-JDBC如何实现分库分表.读写分离. 一.Sharding-JDBC介绍 1.这里引用官网上的介 ...