图染色问题的经典结论

定义

称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色

一张无向图的边着色数为最小的 \(k\) 满足图可以 \(k\) 边染色,但不存在一个 \(k-1\) 边染色方案,记图 \(G\) 的边色数为 \(\chi'(G)\)

同时记 \(\Delta(G)\) 为图上的最大度数

\(\rm{Vizing}\) 定理:

  • 如果满足 \(G\) 是二分图,那么 \(\chi'(G)=\Delta(G)\)

    考虑对这部分进行构造性证明:

    考虑向二分图中加入边 \((x,y)\),设 \(c_x\) 为 \(x\) 点连出的边的颜色中的一个在 \([1,c]\) 中没有出现的颜色,\(c_y\) 同理

    如果 \(c_x=c_y\) 那么直接将这条边染成 \(c_x\) 即可

    否则不妨设 \(c_x< c_y\) 将 \(y\) 点连出的颜色为 \(c_x\) 的边改成颜色 \(c_y\) 并将边 \((x,y)\) 染成 \(c_x\)

    同时由图是二分图,那么一定可以从 \(y\) 点开始找到一条终点不是 \(x\) 的增广路,路径颜色为 \(c_x,c_y\) 交替,直接在 \(\{c_x,c_y\}\) 集合内反色即可

  • 如果 \(G\) 是简单图,那么 \(\Delta(G)\le \chi'(G)\le \Delta(G)+1\)

证明博主不会

例题

Undefined

一张 \((n,m)\) 点的二部图,有 \(k\) 条边,\(c\) 个颜色

一个点的代价是给其边染色之后边表中出现次数最多的颜色减去出现次数最少的颜色,求所有点的代价和的最小值


首先给出结论:\(\rm{Min}=n+m-\sum_{i=1}^{n+m}[c|deg[i]]\)

将一个点的 \(c\) 个边包装成一组进行建立新点,新图仍然是二分图,同时满足每个点的度数 \(\leq c\)

直接使用 \(\rm{Vizing}\) 定理完成结论证明

UOJ44

和上面的题目类似,对于加边操作,动态加虚点找增广路

删边判一下是不是最后一个虚点,不是的话从最后一个点扒一个过来即可

【学习笔记】Vizing 定理的更多相关文章

  1. poj1265&&2954 [皮克定理 格点多边形]【学习笔记】

    Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...

  2. 【学习笔记】Polya定理

    笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...

  3. Windows录音API学习笔记(转)

    源:Windows录音API学习笔记 Windows录音API学习笔记 结构体和函数信息  结构体 WAVEINCAPS 该结构描述了一个波形音频输入设备的能力. typedef struct { W ...

  4. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  5. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  6. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  8. OI知识点|NOIP考点|省选考点|教程与学习笔记合集

    点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...

  9. Windows录音API学习笔记

    Windows录音API学习笔记 结构体和函数信息  结构体 WAVEINCAPS 该结构描述了一个波形音频输入设备的能力. typedef struct { WORD      wMid; 用于波形 ...

随机推荐

  1. 掌握基于AOP事务管理

    一.手动管理和半自动工厂模式 二.AOP事务管理 1.表达式中,第一个※是返回值所有类型,service包下一个点意思是service包下的类,两个点意思是service包下的类和其子包下的类也包含, ...

  2. 枚举类enum

    一.枚举类 package com.xxx.xf.common.enums; import com.xxx.xf.workday.contant.HolidayContant; /** * @Auth ...

  3. MySQL索引、事务、存储引擎

    一.MySQL 索引 1.索引的概念 ●索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址(类似于C语言的链表通过指针指向数据记录的内存地址).●使用索引后可以不用扫描 ...

  4. Java学习笔记--面对对象OOP

    面向对象编程 OOP 面向对象&面向过程 面向对象编程的本质:以类的方式组织代码,以对象的方法组织数据 面向对象编程的三大特征: 封装 继承 多态 方法 静态方法 通过 static 关键词说 ...

  5. Vue3的其他属性和API函数

    customRef() 自定义Ref函数实现Ref()的相关功能 1 <script> 2 import { ref customRef} from 'vue' 3 4 function ...

  6. 2.docker安装及原理

    一. docker的架构 1.1 docker的架构 先来看docker官网给出的docker架构图: 看官网,docker的架构描述: https://docs.docker.com/get-sta ...

  7. MySQL之索引复合索引有效性

    首先这里建立一张数据表,并建立符合索引( index_A,index_B,index_C) CREATE TABLE `test_index_sequence` ( `Id` int(11) NOT ...

  8. python学习1-博客-DB操作类

    #学习python,准备写一个博客,第一天:在别人代码基础上写一个数据库操作的db.py1)python代码 #!/usr/bin/env python # -*- coding: UTF-8 -*- ...

  9. AVS 通信模块之AVSConnectionManager

    AVSConnectionManager 类为客户端无缝地管理与AVS的连接 功能简介 失败时连接重试 允许后续重新连接 ping管理 AVS服务器断开时周期重连服务器 允许客户端完全启用或禁用连接管 ...

  10. docker run 参数

    一.格式 docker run [OPTIONS] IMAGE [COMMAND] [ARG...] 二.OPTIONS 参数 简写, 名称参数 默认参数 描述 --add-host 添加自定义主机到 ...