题解 \(by\;zj\varphi\)

因为对于所有区间,都只有包含和被包含关系,这就是一个树形结构。

设 \(\rm f_{i,j}\) 表示在第 \(\rm i\) 个节点,最多被覆盖 \(\rm j\) 次的答案,方程显然。

\[\rm f_{i,j}=\max\{f_{son_i,j-1+a_i}\}
\]

可以发现,对于一个 \(f_i\) 它的差分数组是单调不增的。

证明:

对于一个 \(f_i\) 如果 \(f_{i,j}-f_{i,j-1}<f_{i,j+1}-f_{i,j}\) 那么,我们就可以把给 \(f_{i,j+1}\) 造成贡献的数转移给 \(f_{i,j}\)。

实现过程就是用一个 \(multiset\) 维护一下即可。

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define pb(x) push_back(x)
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=3e5+7;
int st[N],n,tp,cnt;
ll ans;
struct Seg{int l,r,w;}seg[N];
inline bool operator<(const Seg &s1,const Seg &s2) {return s1.l==s2.l?s1.r>s2.r:s1.l<s2.l;}
std::multiset<ll> dp[N];
std::vector<int> G[N];
inline void merge(std::multiset<ll> &a,std::multiset<ll> &b) {
if (a.size()<b.size()) std::swap(a,b);
std::vector<ll> tmp;
for (auto x:b) {
tmp.pb(x+*a.begin()),a.erase(a.begin());
}
for (auto x:tmp) a.insert(x);
}
void dfs(int x) {
for (auto v:G[x]) {
dfs(v);
merge(dp[x],dp[v]);
}
dp[x].insert(-seg[x].w);
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> n;
for (ri i(1);i<=n;p(i)) cin >> seg[i].l >> seg[i].r >> seg[i].w;
std::sort(seg+1,seg+n+1);
tp=1;
for (ri i(1);i<=n;p(i)) {
while(st[tp]&&seg[st[tp]].r<seg[i].r) --tp;
G[st[tp]].pb(i);
st[p(tp)]=i;
}
dfs(0);
for (auto x:dp[0]) {
ans-=x,p(cnt),printf("%lld ",ans);
if (cnt==n) break;
}
for (ri i(cnt+1);i<=n;p(i)) printf("%lld ",ans);
puts("");
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $31\; \rm Cover$的更多相关文章

  1. NOIP 模拟 $31\; \rm Time$

    题解 \(by\;zj\varphi\) 考虑如何才能最优. 每次一定把当前最小值移动到边界上,那么看它向左还是向右移更优. 用树状数组维护一下即可,复杂度 \(\mathcal O\rm (nlog ...

  2. NOIP 模拟 $31\; \rm Game$

    题解 很容易求出在没有字典序最大的限制条件下的最多胜利场数. 这样就可以对于每一位放最优的解,怎么做,二分答案. 分两种情况,一种是当前一位是输的,一种是赢的,复杂度 \(\mathcal O(\rm ...

  3. noip模拟31[time·game·cover]

    noip模拟31 solutions 我就觉得这些考试题是越考越难,我是也越考越完蛋,已经完完全全的接近爆零了 只有20pts,说真的这还是我第一次挂掉30pts,本来我还有50pts嘞 所以这次考试 ...

  4. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  5. NOIP 模拟 $29\; \rm 完全背包问题$

    题解 \(by\;zj\varphi\) 一道 \(\rm dp\) 题. 现将所有种类从小到大排序,然后判断,若最小的已经大于了 \(\rm l\),那么直接就是一个裸的完全背包,因为选的总数量有限 ...

  6. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  7. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  8. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  9. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

随机推荐

  1. XCTF logmein

    一.查壳 发现是64位的Linux文件(ELF可以看出是linux的文件) 二.拖入ida64,静态分析 注意这里两个坑: 1.strcpy是复制字符串的意思,前面定义的v8数组只有8个,但是后面的字 ...

  2. Neural Approaches to Conversational AI

    Neural Approaches to Conversational AI 学姐介绍的一篇综述阅读笔记 SIGIR 2018 主要贡献: 提出一个综合的调查关于最近几年的应用在QA,任务导向和闲聊对 ...

  3. ESP32-使用有刷直流电机笔记

    基于ESP-IDF4.1 1 /* 2 * 刷直流电动机控制示例,代码通过L298电机芯片测试 3 */ 4 5 #include <stdio.h> 6 7 #include " ...

  4. Python报错“UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 0: ordinal not in range(128)”的解决办法

    最近在用Python处理中文字符串时,报出了如下错误: UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 0: ...

  5. 「CF662C」 Binary Table

    「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0 ...

  6. PYTHON找色不变移动

    import cv2 import aircv as ac import numpy as np def wmhd(sjh): bzz0=0 bzz1=0 bzz2=0 xxa=0 yya=0 xxb ...

  7. Spark的安装和使用

    根据Spark2.1.0入门:Spark的安装和使用在虚拟机安装Spark,并进行测试 实验3  Spark读取文件系统的数据 将文件上传hdfs (1)在spark-shell中读取Linux系统本 ...

  8. [刘阳Java]_Spring AOP入门_第7讲

    AOP技术个人认为是能够完善(改善)面向对象编程OOP.为什么这么说,我们得先从AOP的概念说起,然后通过一段简单的例子加以佐证.这样子大家就可以慢慢地了解AOP 1. AOP概念 AOP为Aspec ...

  9. Day7 break continue goto 以及打印三角形练习.

    break break在任何循环语句中的主体部分,均可以用break控制循环流程.break用于强行退出循环,不执行循环中剩余的语句. (break语句也在switch中使用) package com ...

  10. CSP-S 2020 初赛

    游记 游记个鬼啊跨条街就到了=-= 不分Day反正就一天. 9:30开考,8:30起床. 下雨了,一出宿舍门整个学校全被白色的雾气笼罩.愚以为这是祥瑞之气,昨夜似有麒麟貔貅路过,祝我今日初赛RP++ ...