正题

题目链接:https://atcoder.jp/contests/arc115/tasks/arc115_d


题目大意

\(n\)个数字的序列\(x\),第\(x_i\in [1,A_i]\cap Z\)。要求相邻的不同,求方案数。

\(1\leq n\leq 5\times 10^5,1\leq A_i\leq 10^9\)


解题思路

考虑容斥,如果有\(k\)个相邻的相等那么容斥系数就是\((-1)^k\)。那我们把\(n\)分为若干个连续的相同段,然后每一段的容斥系数分开算就好了,这样就是一个可以\(dp\)的式子了。

设\(f_i\)表示以\(i\)结尾的段时的值,那么有转移方程

\[f_i=\sum_{j=0}^{i-1}f_j\times min\{A_k\}(k\in(j,i])\times (-1)^{i-j-1}
\]

这个\(min\{A_k\}\)每次加入一个新的时候会影响一个后缀,用单调栈找到这个后缀,然后把\(f_i\)丢进线段树里。

而那个容斥系数就是每次整个线段树乘上一个\((-1)\),这个丢到外面处理就好了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=5e5+10,M=N<<2,P=998244353;
ll n,a[N],q[N],f[N];
ll w[M],lazy[M],v[M];
void Downdata(ll x){
if(!lazy[x])return;
w[x*2]=v[x*2]*lazy[x]%P;
w[x*2+1]=v[x*2+1]*lazy[x]%P;
lazy[x*2]=lazy[x*2+1]=lazy[x];
return;
}
void Change(ll x,ll L,ll R,ll l,ll r,ll c){
if(L==l&&R==r){lazy[x]=c;w[x]=v[x]*c%P;return;}
ll mid=(L+R)>>1;Downdata(x);
if(r<=mid)Change(x*2,L,mid,l,r,c);
else if(l>mid)Change(x*2+1,mid+1,R,l,r,c);
else Change(x*2,L,mid,l,mid,c),Change(x*2+1,mid+1,R,mid+1,r,c);
w[x]=(w[x*2]+w[x*2+1])%P;v[x]=(v[x*2]+v[x*2+1])%P;return;
}
void Insert(ll x,ll L,ll R,ll pos,ll c){
if(L==R){v[x]=c;w[x]=c*lazy[x]%P;return;}
ll mid=(L+R)>>1;Downdata(x);
if(pos<=mid)Insert(x*2,L,mid,pos,c);
else Insert(x*2+1,mid+1,R,pos,c);
w[x]=(w[x*2]+w[x*2+1])%P;v[x]=(v[x*2]+v[x*2+1])%P;return;
}
signed main()
{
scanf("%lld",&n);
ll top=1;Insert(1,1,n,1,P-1);
for(ll i=1;i<=n;i++){
scanf("%lld",&a[i]);
while(top>0&&a[i]<a[q[top]])top--;
Change(1,1,n,q[top]+1,i,a[i]);q[++top]=i;
f[i]=(i&1)?(P-w[1]):w[1];
if(i!=n)Insert(1,1,n,i+1,P-w[1]);
}
printf("%lld\n",f[n]);
return 0;
}

ARC115E-LEQ and NEQ【容斥,dp,线段树】的更多相关文章

  1. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  2. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  3. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  4. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  5. ZOJ 3349 Special Subsequence 简单DP + 线段树

    同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...

  6. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  7. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  8. Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)

    Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...

  9. AGC 005D.~K Perm Counting(容斥 DP 二分图)

    题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...

随机推荐

  1. flutter canvas圆圈转圈动画

    import 'dart:math'; import 'dart:ui'; import 'package:flutter/material.dart'; void main() => runA ...

  2. 轻松让你的nginx服务器支持HTTP2协议

    目录 简介 HTTP1.1和HTTP2 安装最新的nginx 开启HTTP2支持 添加SSL支持 修改加密算法 Diffie–Hellman对消息进行加密 重定向所有的HTTP请求到HTTPS 启动n ...

  3. mybatis学习日志一

    Mybatis 介绍 MyBatis 是支持 普通 SQL 查询 , 存储过程 和 高级映射 的优秀持久层框架.MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以 及对结果集的检索封装 ...

  4. QT 资源文件的添加

  5. rocketmq知识点

    消息队列mq 参考资料:https://www.jianshu.com/p/824066d70da8 一.消息中间件的主要作用和功能: 1)异步解耦和分流: 2)挡住前端的数据洪峰,保证后端系统的稳定 ...

  6. POI实现excel的导入导出

    引入依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</arti ...

  7. 使用dom4j工具:XMLWriter写出文件(五)

    package dom4j_write; import java.io.File; import java.io.FileOutputStream; import java.io.OutputStre ...

  8. Linux从头学09:x86 处理器如何进行-层层的内存保护?

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  9. Java通过网络图片之地址,下载到服务器

    @RequestMapping("/downloadTableQrcode") public String downloadTableQrcode(HttpServletReque ...

  10. rasa form的中断形式 自然机器语言学习 人工智能

    Forms形式 最常见的对话模式之一是从用户那里收集一些信息以便做某事(预订餐厅.调用 API.搜索数据库等).这也称为**槽填充**. 用法# 要在 Rasa Open Source 中使用表单,您 ...