Solution Set -「LOCAL」冲刺省选 Round XXIV
\(\mathscr{Summary}\)
名副其实的 trash round,希望以后没有了。
A 题算好,确实一个比较关键的简化状态的点没想到,所以只拿了暴力(不考虑 \(\mathcal O(n^4)\) 能操过更多分的情况,明明 \(\mathcal O(n^4)\) 和 \(\mathcal O(2^n)\) 是一档的。)
B 题签到,C 题倍增 + 分治 NTT 你开 \(10^6\) 我确实 ,要不是 \(10^5\) 分多我甚至懒得写。
\(\mathscr{Solution}\)
\(\mathscr{A}-\) Good
给定 \(\{a_n\},\{w_n\}\),每次可以在 \(\{a_n\}\) 中删去一个先升再降相邻差 \(1\) 的子串,删去长度为 \(l\) 的子串的收益为 \(w_l\)。求经过任意次操作获得的最大收益。
\(n\le400\)。
联系 \(n\) 的范围猜测是区间 DP,所以先莽一个 \(f(l,r)\):把 \(a_{l..r}\) 删干净的最大收益(求出 \(f\) 之后可以再 DP 一下求答案)。注意“子串”成为“子序列”,能够划分子问题,所以自然想到转移时去讨论 \(a_l\) 被怎样的操作删除。
这一点比较巧妙,也算是一个“删子串”转移的 trick:如果删除 \(a_l\) 时没有一起删除 \(a_r\),那么 \(a_{l..r}\) 本身就能分成两段独立转移,所以我们只需要考虑 \(a_l\) 和 \(a_r\) 一起被删掉的操作。
接下来就简单了。定义 \(g(l,r)\) 表示从 \(a_l\) 出发升序删子序列删到 \(a_r\) 所划分出的子问题 \(f\) 的最大和;\(h(l,r)\) 则为降序删子序列。那么
g(l,r)=\max_{i\in[l,r),a_i+1=a_r}\{g(l,i)+f(i+1,r-1)\},\\
h(l,r)=\max_{i\in(l,r],a_i+1=a_l}\{f(l+1,i-1)+h(i,r)\}.
\]
\(\mathcal O(n^3)\) 转移即可。
\(\mathscr{B}-\) Color
给定含有 \(n\) 个点 \(m\) 条边的连通无向图,结点 \(u\) 有颜色 \(c_u\)。每次修改一个结点的颜色,修改后求出异色结点间的最短路。
\(n\le2\times10^5\),\(m\le3\times10^5\),边权非负。
显然最短路一定是一条边;显然只有 MST 上的边有用;显然可以 \(\mathcal O(q\log n)\) 在树上做。
\(\mathscr{C}-\) Music
给定 \(\{v_n\}\),求序列 \(S=\{s_n\}\) 的个数,使得 \(1\le s_i\le v_i\),且 \(S\) 没有 border。
\(n\le10^6\),\(v_i\le v_{i+1}\)。
注意 \(v_i\le v_{i+1}\) 这个限制告诉我们,对于 \(S\) 的任意一个 \(|S|/2\) 以内的前缀,我们可以让它成为 border。所以不难设计出基于此的暴力 DP,令 \(f(i)\) 表示仅考虑 \(s_{1..i}\) 的答案,\(p_i=\prod_{j=1}^iv_j\),那么
\]
发现这是一个很像卷积的东西,但是它要求 \(p(x)\cdot q(x)\) 时,\(p\) 取出的 \(x\) 指数不小于 \(q\) 取出的 \(x\) 指数。从分治乘法的角度考虑,显然所有左端点不为 \(1\) 的区间无法内部转移,所以分治实质上是一个倍增。随便写写画画可以设计这样一个倍增方法:
我们想要求 \(f\) 的灰色部分;红线是当前的中点,橙线是右半部分的中点。黄色连线可以直接卷,蓝色连线递归处理做上文提及的特殊卷积。特殊卷积的复杂度 \(T(n)=\mathcal O(n\log n)+2T(n/2)=\mathcal O(n\log^2n)\),总复杂度 \(F(n)=T(n)+F(n/2)=\mathcal O(n\log^2n)\)。这个 \(10^6\) 带俩 \(\log\) 跑多项式?我的笔记本也是超神只用 \(0.7\text s\) 跑大样例,总之这就是正解,我也想问候出题人。
Solution Set -「LOCAL」冲刺省选 Round XXIV的更多相关文章
- Solution Set -「LOCAL」冲刺省选 Round XXV
\(\mathscr{Summary}\) 读错题了读错题了 B 题差点没做出来真的太吓人了. 逆序开题,C 题直接冲一发暴力最大权闭合子图居然过了.A 题确实一下子没想到用"可能的 ...
- Solution Set -「LOCAL」冲刺省选 Round XXIII
\(\mathscr{Summary}\) 有一说一,虽然我炸了,但这场锻炼心态的效果真的好.部分分聊胜于无,区分度一题制胜,可谓针对性强的好题. A 题,相对性签到题.这个建图确实巧妙,多见 ...
- Solution Set -「LOCAL」冲刺省选 Round XXII
\(\mathscr{Summary}\) 和出题人很有缘分但是没有珍惜.jpg A 题有一个显然的二维偏序斜率式,以及显然的 CDQ 套李超树 \(\mathcal O(n\log^2n)\ ...
- Solution Set -「LOCAL」冲刺省选 Round XXI
\(\mathscr{Summary}\) 省选几个小时啊,怎么模拟赛只打三个小时啊./kk 时间安排较为合理,没有出现严重的因思考时间过少引起的丢分. A 题比较可惜,二分 + 点分治大 ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
随机推荐
- vs2017 快捷键 - 总结
1.格式化代码 先选中需要格式的代码,一般是全选[Ctrl+A]后,Ctrl+K+F[按定Ctrl不动,依序点击 K和F,然后再放开 Ctrl ] 2.多行注释 注释: 先CTRL+K,然后CTRL+ ...
- PowerShell 管道符之Select的使用方法【一】
之前我文章中我们略微提到过管道符的操作,但并不多,这篇主要讲解一下详细的使用方法 假设我们要对数组中的数字1-10中我想要从右往左换句话说就是从字符串最后一个字开始倒过来往前数截取6个子字符串时可以这 ...
- 在 CentOS 7 上安装和配置 Puppet
1 准备 2台 centos7 (master/server:192.168.1.103 agent/client:192.168.1.106) 分别添加puppet自定义仓库 https://yum ...
- VC 2010 Express 学生版(中文版)
Microsoft Visual C++ 2010 Express 学生版 下载传送门(提取码:r7sm) 如何安装 拿到压缩文件后,解压到桌面(别怕,安装完后这个文件夹是可以删除的). 在 &quo ...
- hyperf 如何对AMQP消息进行手动消费?
转发自白狼栈:查看原文 在使用 hyperf 官方自带的 AMQP 队列时你会发现,不需要我们再额外启动进程对消息进行消费.这是因为默认情况下,使用 @Consumer 注解时,hyperf 会为我们 ...
- Keil MDK STM32系列(四) 基于抽象外设库HAL的STM32F401开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- Appium+python自动化测试过程中问题
一.自动删除contactmanager 自动化测试appium提供的sample如下包/activity:com.example.android.contactmanager/.ContactMan ...
- Java中运算符及其优先级、自动类型提升、类型转化
自动类型提升的规则 两个操作数中有一个为double型的数据,计算结果提升为double. 两个操作数中无double型,有一个float,计算结果自动提升为float. ...
- ServletContext接口
Servlet 容器启动时,会为每个 Web 应用(webapps 下的每个目录都是一个 Web 应用)创建一个唯一的 ServletContext 对象,该对象一般被称为"Servlet ...
- Tomcat-Tomcat服务器实例使用的其他细节说明
1,修改工程访问路径 context修改路径 ,访问的地址也会改变成一致 2,修改运行的端口号 3,修改运行时使用的浏览器 4,配置资源热部署